
Developing CUDA Kernels for Accelerated Matrix Multiplication on
NVIDIA Hopper Architecture using the CUTLASS Library

GANESH BIKSHANDI† and JAY SHAH†

We explain how to develop NVIDIA CUDA kernels for optimized general matrix multiplication (GEMM) on NVIDIA Hopper
architecture using the template collection CUTLASS and its core library CuTe. Our main contribution is to provide an
implementation of a GEMM kernel that uses the Tensor Memory Accelerator (TMA) and Warp Group Matrix-Multiply-
Accumulate (WGMMA) operations introduced with NVIDIA Hopper architecture.

1 INTRODUCTION
The problem of devising computationally efficient algorithms for matrix multiplication is of fundamental

importance due to the basic role of this algebraic operation in scientific computing and machine learning. Indeed,
it is the ability to massively parallelize matrix multiplication on the GPU that has in large part enabled the rise of
AI in the modern world (in the form of ever-more sophisticated neural networks).

As a closed-source and broadly scoped solution, NVIDIA already delivers high-performance implementations
of general matrix multiplication (GEMM) in the cuBLAS library and convolutions (CONV) in the cuDNN library.
However, in view of the ongoing rapid evolution of GPU architectures and powerful new AI models, it is becoming
increasingly important for end-users to be able to implement GEMM and CONV algorithms for their specific
applications by writing their own CUDA code. Custom code is mostly needed in the epilogue of a GEMM kernel,
where another operation has to be fused before writing out the result matrix.

For example, Flash Multi-Head Attention (FMHA) is a recent optimized implementation of attention layers in
transformer deep learning models such as Large Language Models (LLMs) [1]. As part of that proposed attention
algorithm, one wants to fuse the matrix multiplications with the softmax nonlinear operations in order to exploit
data locality and thereby achieve better performance, as opposed to a straightforward implementation without
fusion. Implementing FMHA using cuBLAS is not possible as cuBLAS does not expose the thread block or
thread-level operations, where the fusion would need to happen.1

To address these needs, NVIDIA has provided a suite of CUDA C++ template abstractions for implementing
GEMM and related computations through their open-source library CUTLASS, integrated with the CuTe core
library and backend since version 3.0. CUTLASS eases the development of optimized kernels by bringing to
bear modern software engineering practices otherwise lacking in plain CUDA, such as OOPs, C++ templates
(generics), abstract data types (e.g., Tensors, Layouts, and Shapes), and re-usable design patterns.

Nonetheless, it can be challenging for the CUDA programmer to fully leverage the capabilities afforded to
them by CUTLASS. In this publication and the accompanying code, we explain and implement a CuTe-based
GEMM kernel for Hopper architecture that in particular exploits the new Tensor Memory Accelerator (TMA) and
Warp Group MMA (WGMMA) operations to improve performance. To make this publication more self-contained,
we also include a larger analysis of the GEMM problem; other insightful sources on this include [3] and [5]. In
future work, we plan to integrate our GEMM kernel into FMHA and other LLM kernels.
1NVIDIA has announced the cuBLASDx API as a version of cuBLAS that will provide custom fusion support [2], but this isn’t widely available
yet.

†Colfax Research. A copy of this paper is available at https://research.colfax-intl.com/nvidia-hopper-gemm-cutlass/.
Date: December 14, 2023. Email: research@colfax-intl.com.

https://research.colfax-intl.com/nvidia-hopper-gemm-cutlass/
research@colfax-intl.com

2 • Ganesh Bikshandi and Jay Shah

Complete working code for the GEMM kernel explained in this paper is available at: https://github.com/
ColfaxResearch/cutlass-kernels.

2 INITIAL RUNDOWN ON GEMM PERFORMANCE
The H100 PCIe GPU provides a maximum compute performance of 51 Teraflops for FP32 execution and 378

Teraflops for TF32 execution [6].2 The goal for a performant GEMM implementation is to achieve as high a
percentage of this theoretical maximum as possible. With reference to the functionality exposed by CUTLASS,
performance is sensitive to many parameters such as:

 0

 50000

 100000

 150000

 200000

 250000

 300000

Pe
rf

or
m

an
ce

 (G
FL

O
PS

)

K=32768
K=4096
K=512
K=256
K=128
K=64

Fig. 1. CUTLASS SGEMM (TF32) Performance on Hopper (H100 PCIe) GPU for𝑀=𝑁=4096 and𝐾 ∈ {64,128,256,512,4096,32768}
given different tiling shapes, warp counts and stage counts. Sorted in decreasing order of performance.

• Shape of matrices (tall, skinny, or square);
• Layout of matrices (row or column);
• Number of warps per thread block;
• Thread block shape;
• Thread cluster shape;
• Number of pipeline stages in the software pipelining optimization;
• Chosen precision (TF32 vs FP32 vs FP16 vs FP8);
• Usage of special MMA instructions like WGMMA or TMA.

Figure 1 shows the performance variation with different values chosen for TF32 precision.3 The results were
obtained using cutlass_profiler, a tool provided by CUTLASS that generates different GEMM kernels off of a
base kernel by varying parameters and then measures the resulting running time and GFLOPS (among other
metrics).

From our empirical studies, we discovered that the best GEMM kernels try to optimize for maximum Tensor
Core utilization and maximum possible GPU occupancy using software pipelining. In Figure 2, we display the
2The NVIDIA datasheet lists 756 TFlops for TF32 with sparsity.
3Performance is evaluated with respect to the matrix-multiply operation𝐶 = 𝐴 ·𝐵 for𝐴 and 𝐵 generic𝑀 ×𝐾 and𝐾 ×𝑁 matrices, respectively.
In general, the variables𝑀 , 𝑁 , and 𝐾 always refer to these dimensions.

https://github.com/ColfaxResearch/cutlass-kernels
https://github.com/ColfaxResearch/cutlass-kernels

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 3

performance of four such versions of GEMM for single-precision TF32 on H100 PCIe GPU. To the best of our
knowledge, these kernels have been optimally tuned given the available specifications.

 0

 50

 100

 150

 200

 250

 300

cuBLAS CuTe CUTLASS,
TMA+WGMMA

CUTLASS,
TMA+WGMMA+WS

 0

 20

 40

 60

 80

 100

Pe
rf

or
m

an
ce

 (T
F3

2
T

FL
O

PS
)

Effi
ci

en
cy

 (%
)

Performance

215.6

170.0

228.5
249.5Efficiency

54

42

57
62

Fig. 2. SGEMM (TF32) Performance for𝑀=𝑁=𝐾=4096.

The four versions listed here are:

(1) cuBLAS: A version from the cuBLAS library in TF32 execution mode (set using NVIDIA_TF32_OVERRIDE=1).

(2) CuTe: A hand-implemented version (presented in this paper) using CuTe, a collection of C++ CUDA
template abstractions for defining and operating on hierarchically multidimensional layouts of threads and
data. This implementation uses TMA for loads and WGMMA for matrix operations. Software pipelining (cf.
§5) is not used in this version.

(3) CUTLASS, TMA+WGMMA: A version shipped with the CUTLASS library that uses TMA loads and
WGMMA instructions along with software pipelining optimization. This version served as our guide in
implementing GEMM kernels using CuTe.

(4) CUTLASS, TMA+WGMMA+WS: An improved version of (3) that also uses Warp Specialization (WS) and
Thread Clusters. This version, while still not the best possible, utilizes other key differentiators of Hopper
architecture.4 We have chosen to include this to showcase deeper optimizations available for Hopper.

Discussion on using cuBLAS versus CUTLASS has sometimes been framed as trading off the superior general
performance of cuBLAS for the customizability of CUTLASS.5 However, Figure 2 shows that CUTLASS is now
more than competitive with cuBLAS; even our custom version, which implements only a small subset of all
possible optimizations, comes close in performance. We also note that the best CUTLASS kernel we studied
achieves close to 280 TeraFlops in performance. This observed discrepancy in performance between cuBLAS
and CUTLASS is consistent with NVIDIA’s own benchmarking [4].

At any rate, the upshot is that good performance for a custom lightweight GEMM kernel is achievable thanks
to CUTLASS given some effort put in by the CUDA programmer, which bodes well for the performance of fused
4The idea of warp specialization itself is of course not new to Hopper, but it is only implemented in CUTLASS starting with Hopper [11].
5See for example https://github.com/NVIDIA/cutlass/issues/109 for public comment.

https://github.com/NVIDIA/cutlass/issues/109

4 • Ganesh Bikshandi and Jay Shah

kernels down the line. Furthermore, in §6 we will see that our CuTe program outperforms both cuBLAS and
CUTLASS kernels for Batched-GEMM with 𝐾 = 64 and 𝐿 = 96 for batch_count.

3 MATRIX MULTIPLICATION ON THE GPU
To orient the reader, we give a rapid review of some of the basic ideas involved in writing a GEMM kernel in

CUDA.

3.1 The GPU Memory Hierarchy and CUDA Thread Hierarchy
To begin with, understanding the GPU memory hierarchy is crucial for optimizing GEMM kernels. The GPU

has three distinct levels in its memory hierarchy, proceeding from larger and slower to smaller and faster memory:

(1) HBM (High Bandwidth Memory) or Global Memory (GMEM).
(2) Shared memory (on-chip) (SMEM).
(3) Register memory (RMEM).

On the other hand, the CUDA programming model has the thread hierarchy. This is comprised, from coarser
to finer groupings, of grids, thread blocks (i.e., cooperative thread arrays or CTAs), and threads.6 GMEM is
available across the entire grid; SMEM is per streaming multiprocessor (SM), to which a thread block is assigned;
and individual threads have their own RMEM. In this way, CUDA exposes the GPU memory hierarchy to the
programmer [8]. Also note that for the H100 GPU, 32 threads are grouped into one warp for parallel execution on
a SM; the size of a warp is fixed by the particular GPU architecture and thus not under the programmer’s control.

The matrix multiplication algorithms of interest to us are written to be aware of this hierarchical structure.
More precisely, they decompose the top-level matrix multiplication into multiple sub-matrix multiplications (or
tiled matrix multiplications). Each decomposition step made in the algorithm corresponds to moving across one
of the levels in the CUDA thread hierarchy and GPU memory hierarchy. A typical example of how one might
assign tiling shapes to different levels of the hierarchy is given in Figure 3 (taken from [3]).7

Fig. 3. A typical tiling hierarchy used by a GEMM kernel optimized for NVIDIA GPU.

Figure 3 should be read as follows:
6On top of this, Hopper introduces thread block clusters as intermediate between grids and thread blocks. The thread blocks within a cluster,
spread over different SMs, can access each other’s shared memory (distributed shared memory).
7In practice, there are many possible choices for how one might tile the matrices (cf. Figure 1).

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 5

• At the HBM or global memory level, the 𝐴 matrix is divided across the rows (𝑀 dimension) and the 𝐵
matrix is divided across the columns (𝑁 dimension). The result matrix 𝐶 is divided along both the𝑀 and
𝑁 dimensions. A row panel of 𝐴 and a column panel of 𝐵 are assigned to a thread block, which computes a
tile of output 𝐶 .

• Each thread block further tiles the row panel of𝐴 and column panel of 𝐵 along the𝐾 dimension; this ensures
that the tiles fit in shared memory. The corresponding tiles of 𝐴 and 𝐵 are then multiplied, accumulating
the result in the tile of the 𝐶 matrix assigned to the thread block.

• Further optimization then proceeds recursively by sub-tiling each of the tiles for warp and thread-level
computation. Sub-tiles are moved into register memory and the actual element-wise multiplication is
always done at the last level of tiling.

• Note that the sub-tile chosen in the warp tile to be assigned to a thread does not have a contiguous shape;
rather, we have 32 threads assigned to the sub-tiles in each quadrant of the warp tile, so that each thread
sub-tile is spread over all four quadrants. This is done to exploit memory coalescing for parallel thread
execution.

In the remainder of this section, we go over some (pseudo)code that describes both the naive Matmul and tiled
Matmul algorithms.

3.2 Naive Matrix Multiplication
Recall that a naive matrix multiplication can be written using a triply nested loop in C++ as follows:

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)

for (int k = 0; k < K; ++k)
C[i][j] += A[i][k] * B[k][j];

However, writing in CUDA means we can parallelize one or two or all the loops. CUDA naturally provides
2D parallelism in the form of thread blocks and grids when a CUDA kernel is launched, which makes it easy to
parallelize the 𝑖 and 𝑗 loops. The following code snippet illustrates this principle.

__global__ void NaiveGemmKernel(int M, int N, int K, float const *A, int lda, float
const *B, int ldb, float *C, int ldc) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if (i < M && j < N) {

for (int k = 0; k < K; ++k)
C[i + j * ldc] += A[i + k * lda] * B[k + j * ldb];

}
}
dim3 block(16, 16);
dim3 grid((M + block.x - 1) / block.x, (N + block.y - 1) / block.y);
NaiveGemmKernel<<< grid, block >>>(M, N, K, A, lda, B, ldb, C, ldc);

6 • Ganesh Bikshandi and Jay Shah

The 𝑘 loop is now the main loop of the matrix multiplication, while 𝑖 and 𝑗 are not expressed “explicitly” in
the CUDA code as they are inferred from the kernel launch parameters given for the thread block and grid
dimensions. The 𝑘 loop is not parallelized, but CUTLASS provides an option to parallelize along that dimension
also, via the 𝑘-split algorithm. For our discussion, we will suppose that the 𝑘 loop is not parallelized.

3.3 Outer Product Summation and Tiling
The naive matrix multiplication in §3.2 requires the matrices 𝐴 and 𝐵 to be repeatedly brought inside the cache

or shared memory. To obviate this issue, the 𝑘 loop can be permuted to be the outside loop, and this leads to the
“outer product” version of matrix multiplication in which the result matrix 𝐶 is computed as a sum of 𝑘 many
outer products (of columns of 𝐴 and rows of 𝐵).

for (int k = 0; k < K; ++k) // K dimension now outer-most loop
for (int i = 0; i < M; ++i)

for (int j = 0; j < N; ++j)
C[i][j] += A[i][k] * B[k][j];

One problem with computing the result matrix 𝐶 via outer product summation is that this requires 𝐶 to be
live all the time, which for large enough dimensions can quickly exceed all available on-chip memory. A way to
circumvent this problem is “tiling” or “blocking”. The computation can first be tiled into smaller units that can fit
into on-chip memory, after which another set of loops iterates over the tiles:

for (int m = 0; m < M; m += MT) // iterate over M dimension
for (int n = 0; n < N; n += NT) // iterate over N dimension

for (int k = 0; k < K; ++k)
for (int i = 0; i < MT; ++i) // compute for one tile

for (int j = 0; j < NT; ++j) {
int row = m + i;
int col = n + j;
C[row][col] += A[row][k] * B[k][col];

}

Note that we have not yet tiled along the 𝐾 dimension; this comes next.

3.4 Hierarchical or Recursive Matrix Multiplication
We now refer back to Figure 3 and its multiple levels of tiling. Matrix multiplication optimized for the GPU

is implemented in an hierarchical or recursive fashion. At every level of the recursion, the program copies a
tile from one memory to another (e.g., global to shared memory). The actual multiply-accumulate-add happens
only at the leaf level (the last level), which in Figure 3 is thread-level. At the leaf level, we have a choice to
either use the standard multiply-accumulate-add of the SIMT core or specialized Tensor Core instructions. An
implementation optimized for Hopper architecture will choose to recurse only till warpgroup-level (instead of
thread-level) and use the special WGMMA instructions that use the Tensor Cores more optimally [10, §9.7.14].

Pseudocode illustrating this is displayed below:

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 7

// MT, NT, KT = dimensions at threadblock level
// MW, NW, KW = dimensions at warp level

// Loop1A: threadblock-level concurrency
Loop1A: for each m, n in M, N with step MT, NT

Loop1B: for each k in K with step KT
Move a chunk of A from GMEM to SMEM (As)
Move a chunk of B from GMEM to SMEM (Bs)
// Loop2A: warp-level concurrency
Loop2A: for each mm, nn in MT, NT with step MW, NW

Loop2B: for each kk in KT with step KW
Move a chunk of As from SMEM to RMEM (Ar)
Move a chunk of Bs from SMEM to RMEM (Br)
// run mma and accumulate in registers
// further recursion is hidden by mma call
mma(Ar, Br, accum)

Note that the equivalent of the parallelization step handled by launching the CUDA kernel corresponds to the
outermost loop in this pseudocode. Since parallelization occurs over chunks of the 𝐴 and 𝐵 matrices that now are
no longer single rows and columns, converting this pseudocode into working CUDA code is not straightforward.
We will see that the CUTLASS API provides a method for doing this via local_tile.

3.5 Fusing Operations with Matrix Multiplication
For use in real-life workloads, a GEMM kernel will often involve additional operations to be fused with the

above Matmul, such as a linear scaling step. The place where that is done (at the end of the outermost loop) is
referred to as the epilogue. Typically, the accumulator will be in registers in the epilogue. To understand the basic
reason for kernel fusion, consider linear scaling: even though this could be done separate to the initial Matmul,
fusing in the epilogue helps reduce the total bandwidth requirement, since otherwise the linear scaling would
necessitate a re-read of the original 𝐶 and the resulting 𝐷 matrix from global memory.

Although the idea is simple, as a software engineering task there are many issues to be aware of when writing
a fused kernel. For one, there are multiple elementwise operations that need to be fused with Matmul (e.g., ReLU)
in a typical AI-intensive workload. Secondly, the difficulty of fusing various operations can vary greatly with the
operation; for example, softmax is harder to handle than linear scaling.

4 DEVELOPING A GEMM KERNEL USING CUTLASS AND CUTE
Developing and maintaining a performant Matmul kernel is difficult mainly because the shape of the tiles at

each level must be tuned for different GPU architectures, different precision types of the underlying data, and
different matrix sizes. When new levels in the CUDA thread hierarchy are introduced (e.g., the thread cluster
level introduced with Hopper architecture), the kernel code must also be changed with additional loops and other
code to handle that. The unroll parameters need to be tuned by the compiler too. Apart from all this, there are
specialized instructions like WGMMA in Hopper that can boost the performance of the leaf Matmul step. Finally,
fusing operations like linear scaling or softmax with Matmul introduces more complexity into the equation.

8 • Ganesh Bikshandi and Jay Shah

To handle all of this, one has the CUTLASS library. CUTLASS is a C++ templates-based library that provides a
very high-level interface for defining the shape of the tiles at each level of the memory hierarchy. It also provides
an interface called Epilogue that allows the programmer to fuse operations like linear scaling after the completion
of a leaf Matmul. Moreover, CUTLASS defines default leaf level kernels itself and most often selects highly tuned
kernels for the GPU architecture based on the tiling parameters supplied during compile time, the specified
architecture and the precision.

4.1 CUTLASS API Basics
A basic listing of CUTLASS-based Matmul is described in Listing 1. Apart from CuTe, CUTLASS has the

following 3 important APIs for GEMM, each corresponding to a distinct level of the GPU memory hierarchy [12]:

(1) Device API;
(2) Kernel API;
(3) Collective API.

The Collective API embodies a thread block or a cluster of thread blocks (from Hopper architecture onwards).
Collective APIs can be used to construct a GEMM as well as the epilogue to be fused with GEMM. The default
epilogue simply writes out the accumulator of GEMM from register memory to global memory. CUTLASS defines
several other typical operations such as linear scaling and clamping; other device-side function call operators
may also be used to perform custom operations.

The Kernel API embodies the entire grid. It thus schedules the collectives and is responsible for tiling the input
matrices into row and column panels, loading the references to them and invoking the GEMM and the epilogues.
Fusion of epilogues with GEMM happens at the Kernel API level.

The Device API is the highest-level API. It is invoked from the Host (i.e., CPU) and does not have any detail
about the specifics of the Matmul implementation. This API is used by host-side .cu code to invoke CUTLASS’s
GEMM kernels, much like cuBLAS API.

The CUTLASS API relies on C++ templates and meta-programming. Many compile-time values can be set to
default (or auto) values, while the optimal values are chosen to be best possible by the CUTLASS implementation.
Most of the compile-time parameters described in the listing are self-explanatory. The constructed GEMM kernel
can be executed with input and output arguments just like any C++ functor objects.

using ElementA = float; // Element type for A matrix operand
using ElementB = float; // Element type for B matrix operand
using ElementC = float; // Element type for C and D matrix operands
using ArchTag = cutlass::arch::Sm90; // Tag indicating the SM
using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag
using TileShape = Shape<_128,_128,_32>; // Threadblock-level tile size
using ClusterShape = Shape<_1,_2,_1>; // Shape of the threadblocks in a cluster

Collective API

using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass,

ElementA, RowMajor, 4,

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 9

ElementB, ColumnMajor, 4,
ElementAccumulator,
TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAuto,
cutlass::gemm::collective::KernelScheduleAuto

>::CollectiveOp;

using CollectiveEpilogue = typename cutlass::epilogue::collective::
CollectiveBuilder<

cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
TileShape, ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementC, ElementC,
ElementC, ColumnMajor, 4,
ElementC, ColumnMajor, 4,
cutlass::epilogue::collective::EpilogueScheduleAuto

>::CollectiveOp;

Kernel API

using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int,int,int>, // Indicates ProblemShape
CollectiveMainloop,
CollectiveEpilogue

>;

Device API

using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;

Listing 1. Constructing a GEMM Kernel for SM90 (Hopper) Architecture

4.2 Tiled Matrix Multiplication Using CuTe
Even though CUTLASS provides APIs for optimized GEMM and fusing operations with GEMM, developing

fused kernels like FMHA requires lower level APIs of CUTLASS, as the fusion is not straightforward. Such a
custom kernel has been shipped as part of CUTLASS [9]. However, that kernel does not use the new Hopper
features and is mostly customized for SM80 architecture. It is somewhat cumbersome to redevelop this for SM90.

CuTe is another API within the CUTLASS API that provides even more flexibility to develop GEMM kernels. It
specifically introduces the concept of Shapes and Layouts, using which programmers can define the different
levels of tiling explicitly. Additionally, it provide APIs to:

(a) Convert matrices in to tensors and partition them;
(b) Access the tiles of a tensor that belong to a thread block (local_tiles);
(c) Make a local partition of a tensor that belongs to a thread within a thread block (local_partition);
(d) Copy between GEMM, SMEM and RMEM (copy);
(e) Multiply tensors with special Matmul instructions like WGMMA (gemm);

10 • Ganesh Bikshandi and Jay Shah

(f) Synchronize between thread clusters;
(g) Make special swizzle layouts for shared memory.

Listing 2 shows a basic CuTe based Matmul CUDA kernel, obtained from CUTLASS repository [14].8

template <class MShape, class NShape, class KShape,
class TA, class AStride, class ABlockLayout, class AThreadLayout,
class TB, class BStride, class BBlockLayout, class BThreadLayout,
class TC, class CStride, class CBlockLayout, class CThreadLayout,
class Alpha, class Beta>

__global__ static
void
gemm_device(MShape M, NShape N, KShape K,

TA const* A, AStride dA, ABlockLayout blockA, AThreadLayout tA,
TB const* B, BStride dB, BBlockLayout blockB, BThreadLayout tB,
TC * C, CStride dC, CBlockLayout blockC, CThreadLayout tC,
Alpha alpha, Beta beta)

{
using namespace cute;
using X = Underscore;

// Shared memory buffers.
__shared__ TA smemA[cosize_v<ABlockLayout>];
__shared__ TB smemB[cosize_v<BBlockLayout>];

auto sA = make_tensor(make_smem_ptr(smemA), blockA);
auto sB = make_tensor(make_smem_ptr(smemB), blockB);

// Represent the full tensors.
auto mA = make_tensor(make_gmem_ptr(A), make_shape(M,K), dA);
auto mB = make_tensor(make_gmem_ptr(B), make_shape(N,K), dB);
auto mC = make_tensor(make_gmem_ptr(C), make_shape(M,N), dC);

// Get the appropriate blocks for this thread block.
auto MT = size<0>(sA);
auto NT = size<0>(sB);
auto KT = size<1>(sB);

auto gA = local_tile(mA, make_shape(MT, KT), make_coord(blockIdx.x, _));
auto gB = local_tile(mB, make_shape(NT, KT), make_coord(blockIdx.y, _));
auto gC = local_tile(mC, make_shape(MT, NT), make_coord(blockIdx.x, blockIdx.y);

// Define partitioned views of GMEM and SMEM for COPY

8The code has been adjusted in places for clarity. We also display the kernel only, not the main program that launches the kernel.

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 11

auto tAgA = local_partition(gA, tA, threadIdx.x);
auto tAsA = local_partition(sA, tA, threadIdx.x);
auto tBgB = local_partition(gB, tB, threadIdx.x);
auto tBsB = local_partition(sB, tB, threadIdx.x);

// Define partitioned views of SMEM for GEMM.
// Partition sA (M,K) by the rows of tC.
auto tCsA = local_partition(sA, tC, threadIdx.x, Step<_1, X>{});
// Partition sB (N,K) by the cols of tC.
auto tCsB = local_partition(sB, tC, threadIdx.x, Step< X,_1>{});
// Partition gC (M,N) by the tile of tC.
auto tCgC = local_partition(gC, tC, threadIdx.x, Step<_1,_1>{});

// Allocate the accumulators (RMEM).
auto tCrC = make_fragment_like(tCgC);
// Clear the accumulators
clear(tCrC);

Matmul Begin

// Data is copied from GMEM to SMEM using the COPY views.
// gemm(.) operates on the GEMM views.
auto k_max = size<2>(tAgA);
for (int k = 0; k < k_max; ++k) {

// Copy GMEM to SMEM.
copy(tAgA(_,_,k), tAsA);
copy(tBgB(_,_,k), tBsB);

cp_async_fence();
cp_async_wait<0>();
__syncthreads();

// Compute GEMM on SMEM.
// Accumulate to registers.
gemm(tCsA, tCsB, tCrC);
__syncthreads();

}

Matmul End

// Epilogue fusion goes here.
for (int i = 0; i < size(tCgC); ++i)
{

tCgC(i) = tCrC(i);
}

12 • Ganesh Bikshandi and Jay Shah

}

Listing 2. Basic GEMM using CuTe

The key part of the Matmul computation is listed in the loop. The kernel computes the matrix multiplication of
𝐴 and 𝐵𝑇 resulting in𝐶 . The matrices𝐴 and 𝐵 are tiled as shown in Figure 4. The tiling of𝐶 was already discussed
earlier in the naive Matmul implementation. The key differences between naive Matmul and this Matmul are:

(1) Matrix elements are brought from GMEM to SMEM first using an async copy operation;
(2) The result matrix 𝐶 is stored in RMEM and finally written back to GMEM in the epilogue;
(3) The computation is tiled along the 𝐾 dimension also. This enables step (1), as𝐴 and 𝐵 tiles are small enough

to fit in shared memory compared to the full row or column panel.

The two key APIs of CuTe to be emphasized in Listing 2 are:

(1) local_tile: extracts the tiles local to a thread block into a tensor.
(2) local_partition: extracts the elements local to a thread in a thread block into a tensor.

Once local tiles are obtained using the CuTe API, the corresponding tiles of 𝐴 and 𝐵 are multiplied using the
GEMM API and the result is accumulated in the 𝐶 matrix (in registers). After the last tile along the 𝐾 dimension
is processed, the result 𝐶 is then written to GMEM.

An important feature in CuTe is the view of a tensor (in the sense of the C++ concept). During the copy
operation, where the data is read from global to shared memory, a view based on AThreadLayoutA (tA) and
BThreadLayout (tB) is used for input tensors. Such a view is created to improve coalescing for global memory
loads, for example. However, during the gemm operation, a view based on CThreadLayout (tC) is used. Such
a thread-to-data mapping improves the performance of matrix-multiply computation but may not result in
coalesced stores to global memory. The original shared memory can be read and written using the different views.
Thus, the thread layouts of the copy and gemm operations are decoupled so that the best choice for each operation
can be chosen by the user.

Fig. 4. Graphical representation of Tiled CuTe GEMM kernel with SIMT Core. The optimized implementation in §4.3 will
instead use TMA for loading tiles of 𝐴 and 𝐵 from GMEM to SMEM, and WGMMA for computing the tiles of 𝐶 .

Note that we have used no-transpose for 𝐴 and transpose for 𝐵 (commonly referred to as NT layout), as
that is easy to implement using SIMT mul-add. In contrast, the versions shown in Figure 2 all use TN layout.
Nevertheless, this version will serve as a basis for the version of Matmul that we present next.

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 13

4.3 Incorporating TMA and WGMMA instructions from NVIDIA Hopper Architecture
The listing 2 in the preceding section uses a plain SIMT mul-add operation as the atom to compute the product

of two tiles. On the other hand, modern NVIDIA GPUs such as the H100 provide Tensor Cores that accelerate
mixed-precision computation several-fold. Additionally, Hopper architecture also introduces the Tensor Memory
Accelerator (TMA), which can transfer large blocks of data efficiently between global memory and shared memory.
To utilize TMA and Tensor Cores, two important changes are required:

• The copy API call should be changed to include the TMA copy atom;
• The gemm API call should be changed to include the MMA atom – for Hopper, we choose WGMMA.

TheWGMMA atom schedules data of size 64×8 (other sizes are possible too) split across 128 threads atomically
as one operation on a tensor core. The mapping of rows and columns of the resultant𝑀𝑇 ×𝑁𝑇 tile of𝐶 to threads
is more complex than those listed in the preceeding sections. CuTe provides utilities that define the mapping,
so users need not understand the details of the complex thread layout. At the same time, while implementing
complex fused kernels in the epilogue, programmers can use CuTe APIs to unravel the thread layout so as to
obtain the correct row and column of individual elements of the tile.

Typically, while using WGMMAs the loads of the𝐴 and 𝐵 tiles are executed using TMA. TMA loads offer better
performance than cp.async. WGMMA operations require that the shared memory allocated for the tiles of the 𝐴
and 𝐵 matrices be in a certain “swizzled” format [10], which is supported by TMA. TMA loads are asynchronous
and are invoked from one thread (typically thread 0), while the other threads wait on a cuda::barrier for the
operation to be completed. Thus, TMA loads require producer-consumer style synchronization between the
threads of a warp.

Listing 3 shows the relevant part of the new GEMM kernel that uses TMA and WGMMA. The copy and gemm
views are not shown in the new listing for brevity.9

....
for (int k = 0; k < size<1>(tAgA); ++k)
{
.....

//copy A and B from GMEM to SMEM using COPY views.
if (threadIdx.x == 0)
{
/// Initialize shared memory barrier
....
copy(tma_copy_a, tAgA(_,k), tAsA);
copy(tma_copy_b, tBgB(_,k), tBsB);

}
__syncthreads();

/// Wait on the shared memory barrier.
....
__syncthreads();

9CuTe provides APIs to get the correct views for TMA copy and WGMMA gemm operations.

14 • Ganesh Bikshandi and Jay Shah

warpgroup_fence_operand(tCrC);

cute::gemm(wmma_atom, tCrA, tCrB, tCrC);

warpgroup_commit_batch();
warpgroup_wait<1>();
__syncthreads();

}
.....

Listing 3. GEMM using TMA+WGMMA

As is shown in Figure 5, the TMA+WGMMA version provides almost a sevenfold improvement compared to
the CuTe basic version, since it uses the Tensor Cores. However, there is clear room for improvement in terms of
Tensor Core utilization.

 0

 100

 200

 300

 400

 500

TF32 FP16
 0

 20

 40

 60

 80

 100
 0 2 4 6 8 10

Pe
rf

or
m

an
ce

 (T
FL

O
PS

)

Te
ns

co
re

 U
ti

liz
at

io
n

(%
)

cuBLAS
CuTe

CuTe-Basic
Tensor Core Utilization

Fig. 5. cuBLAS vs CuTe vs CuTe-Basic (TF32 and FP16 precision).

5 ADDITIONAL OPTIMIZATIONS
Recall from §2 that the best CUTLASS kernel for SGEMM delivers around 280 TFLOPS, while cuBLAS delivers

around 215 TFLOPS. CUTLASS implements manymore optimizations to achieve this superior level of performance.
To list a few from the documentation [11], we have:

(1) Software Pipelining – Software pipelining is a technique to hide memory latency where memory accesses
and math instructions are executed concurrently, while always accounting for the dependencies between
these steps. The CUTLASS implementation uses multiple buffers at both the thread block and warp level.

(2) Warp Specialization – With optimizations like software pipelining, different threads or groups of threads
naturally have distinct roles. Some are producers that load data, while others are consumers that run the
MMA instructions. The idea of warp specialization is to spatially partition the warps in a thread block into
two groupings of producers and consumers.

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 15

(3) Persistent Kernels – Persistent kernels is a CUDA design pattern that aims to avoid kernel launch and
configuration overhead by keeping the kernel persistent on the GPU across multiple calls. In CUTLASS,
this involves having persistent thread blocks compute multiple output tiles over their lifetime.

(4) Two co-operative consumerwarp groups –WGMMA allows the operand𝐴 tile to be in register memory
too instead of shared memory. However, that restricts the tile size of𝐴 due to limited register space. Splitting
the tile size across the𝑀 dimension into two and assigning to two different consumer warp groups allows
for larger tile sizes and eases register pressure.

(5) Warp-Specialized Persistent Ping-Pong kernel – The two consumer warp groups from (4) are each
assigned to a different output tile. This allows for the epilogue of one consumer warp group to be overlapped
with the math operations of the other consumer warp group, thus maximizing tensor core utilization. There
is also synchronization on the side of the producer warp groups.

From our empirical studies, point (5) in particular is largely responsible for the gap between the fourth column
in Figure 2 and the indicated 280 TFLOPS number for the best measured CUTLASS kernel.

6 BATCHED-GEMM
The AI workflow that we are targeting does not involve multiplying large square matrices. Instead, it involves

large square matrices decomposed as products of matrices with small 𝐾 (e.g., 64 or 128), and with batch count
𝐿 > 1 (e.g., 64 or 96); cf. [1, §2.2]. Such a scheme is popularly known as Batched-GEMM. Our CuTe program can
be extended to handle Batched-GEMM by simply setting the third dimension of the grid to be 𝐿. We then use
blockIdx.z when using the local_tile operation inside the CUDA kernel, as shown in listing 4.

....
auto gA = local_tile(mA, make_shape(MT, KT), make_coord(blockIdx.x, _, blockIdx.
z));

auto gB = local_tile(mB, make_shape(NT, KT), make_coord(blockIdx.y, _, blockIdx.
z));

auto gC = local_tile(mC, make_shape(MT, NT), make_coord(blockIdx.x, blockIdx.y,
blockIdx.z);
....

Listing 4. Batched-GEMM kernel using CuTe

Performance of such a Batched-GEMM using CuTe is shown in Figure 6. Surprisingly, the CuTe program
outperforms both cuBLAS and CUTLASS, even though it does not use any of the additional optimizations that
CUTLASS uses as listed in §5.

At the same time, all of the programs deliver sub-optimal performance for Batched-GEMM. From Figure 1,
we can infer that, for small 𝐾 (64 or 128), the performance of GEMM is sub-optimal in general. In particular, it
appears that the optimizations listed in §5 need to be adapted to the case of smaller matrices and Batched-GEMM,
or else different methods should be brought to bear.

7 CONCLUSION AND FUTURE WORK
To summarize, we discussed how to develop a CuTe-based GEMM kernel for NVIDIA Hopper architecture that

uses the Tensor Memory Accelerator (TMA) and Warp Group MMA (WGMMA) operations. Our CuTe program

16 • Ganesh Bikshandi and Jay Shah

 0

 20

 40

 60

 80

 100

cuBLAS CuTe CUTLASS

Pe
rf

or
m

an
ce

 (T
F3

2
T

FL
O

PS
)

47.9
53.9 51.1

Fig. 6. Batched-SGEMM with𝑀=𝑁=4096, 𝐾=64 and 𝐿=96.

achieved close to 80% of the performance of the standard cuBLAS GEMM kernel with this one single optimization.
For Batched-GEMM, our CuTe program outperformed both cuBLAS and CUTLASS.

Currently, we are working to integrate our GEMM kernel with Flash Multi-Head Attention (FMHA) [1], a
popular attention layer used in Large Language Models (LLMs). Some important challenges to be addressed are:

• FMHA necessitates changes to the basic GEMM kernel described in this paper. The most significant change
is that all panels of the 𝐵 matrix are assigned to the same thread block, nullifying any parallelism along
that dimension in the grid. On the other hand, LLMs use batched GEMM, introducing parallelism along the
third dimension 𝐿 of the grid.

• The online-softmax [13] computation has to be fused with the result of the GEMM (tCrC) in registers,
which involves atomic operations across threads for computing the maximum and sum of each row.

• FMHA uses a smaller 𝐾 dimension (64 or 128) in comparison to𝑀 and 𝑁 . From Figure 1, we know that
GEMM performance for small 𝐾 values tends to be very sub-optimal. We plan to adapt the optimizations
listed in §5 to the setting of matrices with small 𝐾 and Batched-GEMM.

REFERENCES
[1] FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. Tri Dao. July 17, 2023. https://arxiv.org/abs/2307.08691.
[2] New cuBLAS 12.0 Features and Matrix Multiplication Performance on NVIDIA Hopper GPUs. Roman Dubtsov, Evarist Fomenko and

Babak Hejazi. February 1, 2023. https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-
nvidia-hopper-gpus/

[3] CUTLASS: Fast Linear Algebra in CUDA C++. Andrew Kerr, Duane Merrill, Julien Demouth and John Tran. December 5, 2017.
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/.

[4] CUTLASS 3.2 – Performance. https://github.com/NVIDIA/cutlass#performance.
[5] CuTe dense matrix-matrix multiply tutorial. https://github.com/NVIDIA/cutlass/blob/main/media/docs/cute/0x_gemm_tutorial.md.
[6] NVIDIA H100 Tensor Core GPU Datasheet. https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet.
[7] NVIDIA Hopper Architecture In-Depth. Michael Andersch, Greg Palmer, Ronny Krashinsky, Nick Stam, Vishal Mehta, Gonzalo Brito and

Sridhar Ramaswamy. March 22, 2022. https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

https://arxiv.org/abs/2307.08691
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://github.com/NVIDIA/cutlass#performance
https://github.com/NVIDIA/cutlass/blob/main/media/docs/cute/0x_gemm_tutorial.md
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Developing CUDA Kernels for GEMM on Hopper using CUTLASS • 17

[8] CUDA Refresher: The CUDA Programming Model. Pradeep Gupta. https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-
model/

[9] xFormers: A modular and hackable Transformer modelling library. Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan
Xiong, Vittorio Caggiano, Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza. 2022. https:
//github.com/facebookresearch/xformers.

[10] Parallel Thread Execution ISA Version 8.2. https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.
[11] Efficient GEMM in CUDA. https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md.
[12] CUTLASS 3.0 GEMM API. https://github.com/NVIDIA/cutlass/blob/main/media/docs/gemm_api_3x.md
[13] Online normalizer calculation for softmax. Maxim Milakov and Natalia Gimelshein. 2018. https://doi.org/10.48550/arXiv.1805.02867.
[14] https://github.com/NVIDIA/cutlass/blob/main/examples/cute/tutorial/sgemm_nt_1.cu.

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md
https://github.com/NVIDIA/cutlass/blob/main/media/docs/gemm_api_3x.md
https://doi.org/10.48550/arXiv.1805.02867
https://github.com/NVIDIA/cutlass/blob/main/examples/cute/tutorial/sgemm_nt_1.cu

	Abstract
	1 Introduction
	2 Initial Rundown on GEMM Performance
	3 Matrix Multiplication on the GPU
	3.1 The GPU Memory Hierarchy and CUDA Thread Hierarchy
	3.2 Naive Matrix Multiplication
	3.3 Outer Product Summation and Tiling
	3.4 Hierarchical or Recursive Matrix Multiplication
	3.5 Fusing Operations with Matrix Multiplication

	4 Developing a GEMM kernel using CUTLASS and CuTe
	4.1 CUTLASS API Basics
	4.2 Tiled Matrix Multiplication Using CuTe
	4.3 Incorporating TMA and WGMMA instructions from NVIDIA Hopper Architecture

	5 Additional Optimizations
	6 Batched-GEMM
	7 Conclusion and Future Work
	References

