
A note on the algebra of CuTe Layouts
Jay Shah†

1 INTRODUCTION
The core abstraction of NVIDIA’s CUTLASS library for high-performance linear algebra is a specific notion

of layout, introduced as part of its new backend core library CuTe in version 3.0 [1]. CuTe Layouts comprise a

convenient formalism for describing and manipulating data of a multi-dimensional nature, such as the values of

a matrix or tensor. The goal of this technical note is to study CuTe Layouts from a rigorous, mathematical point

of view. Currently, the focus is on articulating sufficient conditions for the operations of complementation and

composition to be well-defined, and also to provide explicit closed formulae for them. These operations play an

important role in and of themselves, but also jointly in defining the operation of logical division. This operation,
as well as its relatives such as zipped division, plays a critical role in various tiling and slicing operations for CuTe

Layouts and Tensors (which are essentially Layouts together with pointers into memory).

This note should be read as complementary to the discussion of layout operations in the CuTe documentation

[2]. However, we think that certain portions of that documentation are mathematically vague or false if interpreted

literally, which spurred the writing of this note. Most significantly, no discussion of necessary conditions for the

operation of composition to be well-defined is given there. This becomes problematic when, for example, it is

claimed that composition is left-distributive with respect to concatenation.
1
In code, this is given as a definition

of composition in the general case. But consider the simple example of

Layout A = make_layout(make_shape(_6{},_2{}),make_stride(_1{},_7{}));
Layout B = make_layout(make_shape(_3{},_2{}),make_stride(_2{},_3{}));
Layout C = composition(A,B);

Then when running with CUTLASS 3.3, the layout 𝐶 evaluates to

(_3,_2):(_2,_3)

since 𝐶 is defined according to the supposed left-distributivity property. But note that𝐶 doesn’t actually describe

the composition of 𝐴 and 𝐵 in terms of the associated layout functions 𝑓𝐴, 𝑓𝐵 , and 𝑓𝐶 . Indeed, we have that

𝑓𝐶 (5) = 𝑓𝐶 (2) + 𝑓𝐶 (3) = 4 + 3 = 7,

whereas

(𝑓𝐴 ◦ 𝑓𝐵) (5) = 𝑓𝐴 (7) = 𝑓𝐴 (1) + 𝑓𝐴 (6) = 1 + 7 = 8.

Actually, in this case 𝐴 ◦ 𝐵 will not be well-defined as a layout, even though for the separate modes 𝐵0 and 𝐵1 of

𝐵, the compositions 𝐴 ◦ 𝐵0 and 𝐴 ◦ 𝐵1 are well-defined. This “overflow” issue occurs since a certain disjointness

condition is violated, which we articulate as Definition 2.17. Of course, in practice the programmer would not

consider such a composition to begin with, but we hope that our note can serve as an all-purpose reference for

when such operations are meant to be valid. However, we emphasize that the treatment of layouts given in this

note is entirely implementation-agnostic.

The contents of the current note form a self-contained body of work as it stands, although it will appear

unmotivated if the reader doesn’t already have prior experience working with CuTe Layouts. We anticipate

adding to this document as the need arises, or if elaborations of other aspects of layout algebra are desired by

CUTLASS/CuTe developers.

1
Item (3) in “Rules for computing composition” from [2].

†
Colfax Research. A copy of this note is available at https://research.colfax-intl.com/.

Date: January 16, 2024. Email: jayhshah@colfax-intl.com.

https://research.colfax-intl.com/

2 • Jay Shah

2 LAYOUT ALGEBRA

Definition 2.1. A layout 𝐿 is a pair of positive
2
integer tuples S and D of matching dimensions. We call S the

shape and D the stride. We write 𝐿 = S : D.

From now on in this note, we assume that layouts are flattened (i.e., internal parentheses for 𝑆 and 𝐷 have

been removed); this won’t change the semantics of the operations that we consider. Let’s first introduce some

basic terminology:

Definition 2.2. Let 𝛼 ≥ 0 be an integer and 𝐿 = S : D = (𝑀0, ..., 𝑀𝛼) : (𝑑0, ..., 𝑑𝛼) be a layout. Then:

• The size of 𝐿 is the product𝑀 = 𝑀0 · ... ·𝑀𝛼 .

• The length of 𝐿 is the integer 𝛼 + 1.

• A mode of 𝐿 is one of the entries (𝑀𝑘) : (𝑑𝑘) for 0 ≤ 𝑘 ≤ 𝛼 . We may regard this as a length 1 layout.

Given two layouts 𝐿 = S : D and 𝐿′ = S′ : D′
, let S′′ and D′′

be the shape and stride tuples given by (the flattening

of) (S, S′) and (D,D′). Then the concatenation of 𝐿 and 𝐿′
is given by the layout

(𝐿, 𝐿′) ≔ S′′ : D′′,

and we say that (𝐿, 𝐿′) is decomposed by 𝐿 and 𝐿′
. Inductively, given layouts 𝐿1, ..., 𝐿𝑁 , we can then form the

concatenated layout (𝐿1, ..., 𝐿𝑁). Conversely, given 𝐿 a layout, 𝐿 is maximally decomposed by its modes.

To each layout 𝐿, we can associate a function as follows. Let S = (𝑀0, ..., 𝑀𝛼) and D = (𝑑0, ..., 𝑑𝛼) be the

respective shape and stride tuples for 𝐿. Let𝑀 = 𝑀0 ·𝑀1 · ... ·𝑀𝛼 be the size of 𝐿 and let [0, 𝑀) ⊂ N be the subset

of the natural numbers given by {0, ..., 𝑀 − 1}. Then we have an isomorphism

𝜄 : [0, 𝑀) � [0, 𝑀0) × [0, 𝑀1) × . . . × [0, 𝑀𝛼)

given by 𝑥 ↦→ (𝑥 mod𝑀0,

⌊
𝑥
𝑀0

⌋
mod𝑀1, . . . ,

⌊
𝑥

𝑀0 ·... ·𝑀𝛼−1

⌋
mod𝑀𝛼).

Definition 2.3. Given a layout 𝐿, its layout function 𝑓𝐿 : [0, 𝑀) → N is defined to be the composite

[0, 𝑀) � [0, 𝑀0) × . . . × [0, 𝑀𝛼) ⊂ N×(𝛼+1) (·𝑑0,..., ·𝑑𝛼)−−−−−−−−→ N×(𝛼+1) +−→ N.

In other words, 𝑓𝐿 is the composition of the multi-linear function

[0, 𝑀0) × . . . × [0, 𝑀𝛼) → N, (𝑥0, ..., 𝑥𝛼) ↦→ 𝑑0𝑥0 + ... + 𝑑𝛼𝑥𝛼 ,

determined by the stride, with the isomorphism 𝜄, determined by the shape.

We then let 𝑓𝐿 : N→ N be the extension of 𝑓𝐿 defined by replacing𝑀𝛼 by ∞, i.e., the composite

N � [0, 𝑀0) × . . . × [0, 𝑀𝛼−1) × N ⊂ N×(𝛼+1) (·𝑑0,..., ·𝑑𝛼)−−−−−−−−→ N×(𝛼+1) +−→ N

where the first isomorphism is the extension �̂� of 𝜄 given by

𝑥 ↦→ (𝑥 mod𝑀0,

⌊
𝑥

𝑀0

⌋
mod𝑀1, . . . ,

⌊
𝑥

𝑀0 · ... ·𝑀𝛼−2

⌋
mod𝑀𝛼−1,

⌊
𝑥

𝑀0 · ... ·𝑀𝛼−1

⌋
).

2
For our purposes, we ignore the empty layout as well as zero strides.

A note on the algebra of CuTe Layouts • 3

2.1 Complementation
In this subsection, we define the notion of the complement of a layout 𝐴 with respect to a given integer 𝑀 ,

under certain assumptions.

Definition 2.4. Let 𝐴 = (𝑁0, ..., 𝑁𝛼) : (𝑑0, ..., 𝑑𝛼) be a layout. We say that 𝐴 is sorted if 𝑑0 ≤ ... ≤ 𝑑𝛼 and for

every 𝑖 < 𝑗 such that 𝑑𝑖 = 𝑑 𝑗 , 𝑁𝑖 ≤ 𝑁 𝑗 .

Definition 2.5. Let 𝐴 = (𝑁0, ..., 𝑁𝛼) : (𝑑0, ..., 𝑑𝛼) be a layout and𝑀 a positive integer. Suppose without loss of

generality that 𝐴 is sorted; if not, replace 𝐴 with a permutation of itself that is sorted. Then we say that the pair

{𝐴,𝑀} is admissible for complementation (or simply admissible) if:

• For all 1 ≤ 𝑖 ≤ 𝛼 , the product 𝑁𝑖−1𝑑𝑖−1 divides 𝑑𝑖 .

• The product 𝑁𝛼𝑑𝛼 divides𝑀 .

Definition 2.6. Let 𝐴 = (𝑁0, ..., 𝑁𝛼) : (𝑑0, ..., 𝑑𝛼) be a layout and 𝑀 a positive integer. Suppose that {𝐴,𝑀} is
admissible for complementation and reindex 𝐴 so that it is sorted. Then the complement of {𝐴,𝑀} is defined to

be the layout

complement(𝐴,𝑀) = (𝑑0,
𝑑1

𝑁0𝑑0
,

𝑑2

𝑁1𝑑1
, . . . ,

𝑀

𝑁𝛼𝑑𝛼
) : (1, 𝑁0𝑑0, 𝑁1𝑑1, . . . , 𝑁𝛼𝑑𝛼) .

Note that by definition, the complement of 𝐴 (taken with respect to some integer𝑀) is insensitive to permuta-

tions of 𝐴. Moreover, its layout function is strictly increasing.

The following proposition explains the sense in which Definition 2.6 is taking a complement.

Proposition 2.7. Let {𝐴 = (𝑁0, ..., 𝑁𝛼) : (𝑑0, ..., 𝑑𝛼), 𝑀} be an admissible pair and 𝐵 = complement(𝐴,𝑀).
Let 𝐶 = (𝐴, 𝐵) be the concatenated layout. Then the size of 𝐶 is 𝑀 and 𝑓𝐶 : [0, 𝑀) → N restricts to a bijection
[0, 𝑀) � [0, 𝑀).

Proof. Since size(𝐴) · size(𝐵) = 𝑀 , we see that the domain of 𝑓𝐶 is indeed [0, 𝑀). Note that the image of 𝑓𝐶 is

the same as that of 𝑓𝐶′ for any permutation 𝐶 ′
of 𝐶 . Therefore, when computing the image of 𝑓𝐶 we may sort 𝐶

so that the strides are in non-decreasing order, as well as reindex 𝐴 so that it is sorted. So after reindexing 𝐴, let

𝐶 ′ = (𝑑0, 𝑁0,
𝑑1

𝑁0𝑑0
, 𝑁1,

𝑑2

𝑁1𝑑1
..., 𝑁𝛼 ,

𝑀

𝑁𝛼𝑑𝛼
) : (1, 𝑑0, 𝑁0𝑑0, 𝑑1, 𝑁1𝑑1, ..., 𝑑𝛼 , 𝑁𝛼𝑑𝛼).

Then we may write

𝐶 ′ = (𝑟0, 𝑟1, 𝑟2, ..., 𝑟𝛽) : (1, 𝑟0, 𝑟0𝑟1, ..., 𝑟0...𝑟𝛽−1)
for 𝛽 = 2𝛼 + 1, and the maximum value that 𝑓𝐶 attains is computed as

(𝑟0 − 1) + 𝑟0 (𝑟1 − 1) + (𝑟0𝑟1) (𝑟2 − 1) + ... + (𝑟0...𝑟𝛽−1) (𝑟𝛽 − 1) = 𝑟0𝑟1...𝑟𝛽 − 1 = 𝑀 − 1.

To establish the bijectivity assertion, it then suffices to show that 𝑓𝐶′ is injective. For this, suppose that 𝑥,𝑦 ∈ [0, 𝑀)
so that 𝑓𝐶′ (𝑥) = 𝑓𝐶′ (𝑦), and let (𝑥0, ..., 𝑥𝛽) and (𝑦0, ..., 𝑦𝛽) be their coordinate vectors with respect to𝐶 ′

. Expanding

the terms in the equality we get

𝑥0 + 𝑟0𝑥1 + (𝑟0𝑟1)𝑥2 + ... + (𝑟0...𝑟𝛽−1)𝑥𝛽 = 𝑦0 + 𝑟0𝑦1 + (𝑟0𝑟1)𝑦2 + ... + (𝑟0...𝑟𝛽−1)𝑦𝛽 .
We show by induction that 𝑥𝑖 = 𝑦𝑖 for all 𝑖 ∈ {0, ..., 𝛽}, which will complete the proof. Firstly, taking both sides

mod 𝑟0 shows that 𝑥0 = 𝑦0 since both lie in [0, 𝑟0). Now suppose by induction that given 0 < 𝑖 ≤ 𝛽 , for all 𝑗 < 𝑖

we have 𝑥 𝑗 = 𝑦 𝑗 . Then we can reduce the expression to

(𝑟0 ...𝑟𝑖−1)𝑥𝑖 + ... + (𝑟0 ...𝑟𝛽−1)𝑥𝛽 = (𝑟0...𝑟𝑖−1)𝑦𝑖 + ... + (𝑟0...𝑟𝛽−1)𝑦𝛽 .
Taking this equation mod 𝑟0...𝑟𝑖 and dividing by (𝑟0 ...𝑟𝑖−1) shows that 𝑥𝑖 = 𝑦𝑖 , since we know both lie in [0, 𝑟𝑖). □

4 • Jay Shah

Corollary 2.8. In the setting of Proposition 2.7, let 𝐼 = [0, size(𝐴)) = [0, 𝑁0...𝑁𝛼) be the domain of 𝑓𝐴. Then

𝑓𝐴 (𝐼) ∩ 𝑓𝐵 (𝐼) = {0}.

In other words, 𝑓𝐴 and 𝑓𝐵 have disjoint image when restricted to the domain of 𝑓𝐴, apart from 0.

Proof. Let 𝐽 = [0, size(𝐵)) = [0, 𝑀/(𝑁0...𝑁𝛼)). By Proposition 2.7, we have that

𝑓𝐴 (𝐼 ∩ 𝐽) ∩ 𝑓𝐵 (𝐼 ∩ 𝐽) = {0}.

It remains to consider values of the extended function 𝑓𝐵 on integers that might lie in 𝐼 but not 𝐽 . But 𝑓𝐵 is a

strictly increasing function, 𝑓𝐵 (size(𝐵)) = 𝑀 , and the largest value attained by 𝑓𝐴 satisfies the inequality

(𝑁0 − 1)𝑑0 + (𝑁1 − 1)𝑑1 + ... + (𝑁𝛼 − 1)𝑑𝛼 < 𝑑1 + (𝑁1 − 1)𝑑1 + (𝑁2 − 1)𝑑2 + ... + (𝑁𝛼 − 1)𝑑𝛼
≤ 𝑑2 + (𝑁2 − 1)𝑑2 + ... + (𝑁𝛼 − 1)𝑑𝛼 ≤ ...

≤ 𝑑𝛼 + (𝑁𝛼 − 1)𝑑𝛼 ≤ 𝑀.

□

Remark 2.9. The CuTe documentation [2] stipulates that the complement 𝐵 of a layout 𝐴 with respect to an

integer𝑀 should satisfy three properties:

(1) 𝐴 and 𝐵 are disjoint in the sense that 𝑓𝐴 (𝑥) ≠ 𝑓𝐵 (𝑥) for all 𝑥 ≠ 0 in the domain of 𝑓𝐴;

(2) 𝐵 is ordered in the sense that 𝑓𝐵 is a strictly increasing function;

(3) 𝐵 is bounded by𝑀 in the sense that size(𝐵) ≥ 𝑀/size(𝐴) and cosize(𝐵) ≤
⌊

𝑀
cosize(𝐴)

⌋
· cosize(𝐴). Here, we

let the cosize of a layout 𝐴 be given by 𝑓𝐴 (size(𝐴) − 1) + 1.

We observe that all these properties are satisfied by the definition of complement given in Definition 2.6 for

{𝐴,𝑀} admissible. (1) follows from Corollary 2.8.
3
(2) follows by definition of the complement as we noted above.

Finally, for (3) we have that size(𝐵) = 𝑀/size(𝐴) and

cosize(𝐵) = 1 + (𝑑0 − 1) +
(

𝑑1

𝑁0𝑑0
− 1

)
𝑁0𝑑0 + ... +

(
𝑀

𝑁𝛼𝑑𝛼
− 1

)
𝑁𝛼𝑑𝛼

= 𝑑0 + (𝑑1 − 𝑁0𝑑0) + ... + (𝑑𝛼 − 𝑁𝛼−1𝑑𝛼−1) +𝑀 − 𝑁𝛼𝑑𝛼

= 𝑀 − ((𝑁0 − 1)𝑑0 + ... + (𝑁𝛼 − 1)𝑑𝛼)
= 𝑀 − (cosize(𝐴) − 1),

where we reindexed 𝐴 according to its sort for the intermediate terms; this doesn’t change the final equality.

Therefore, the inequality to check for the cosizes becomes

𝑀

cosize(𝐴) − 1 + 1

cosize(𝐴) ≤
⌊

𝑀

cosize(𝐴)

⌋
,

which holds for any pair of positive integers.

Example 2.10. We give two examples in CUTLASS 3.3 for when CuTe’s complement method can be evaluated

but has potentially undesired behavior. Consider the layout 𝐴 = (4) : (2) and 𝑀 = 19, so we don’t have that

{𝐴,𝑀} is admissible. Then complement(A,M) evaluates to

(_2,_3):(_1,_8)

3
Corollary 2.8 is actually stronger since it concerns disjointness of the images.

A note on the algebra of CuTe Layouts • 5

However, in this case cosize(𝐵) = 18, whereas cosize(𝐴) = 7 and thus⌊
𝑀

cosize(𝐴)

⌋
· cosize(𝐴) =

⌊
19

7

⌋
· 7 = 2 · 7 = 14.

Now consider 𝐴 = (2, 2) : (2, 3) and𝑀 = 19. Then complement(A,M) evaluates to

(_2,_0,_4):(_1,_4,_6)

which is the empty layout (with size(𝐵) = 0), since 0 occurs in its shape tuple.

2.2 Composition
We next discuss the operation of composition of layouts 𝐴 and 𝐵. For simplicity, we suppose that the

shape tuples contain no integers equal to 1; stripping out these modes doesn’t change the associated layout

function. The goal here is to produce a layout, denoted 𝐴 ◦ 𝐵, whose associated function 𝑓𝐴◦𝐵 identifies with the

composition 𝑓𝐴 ◦ 𝑓𝐵 . In general, we need conditions in order to be able to define 𝐴 ◦ 𝐵.

Definition 2.11. Let𝑀,𝑑 > 0 be positive integers and let𝑀 = 𝑀0 ·𝑀1 · ... ·𝑀𝛼 be a given factorization of𝑀 by

integers𝑀𝑘 > 1. Replacing𝑀𝛼 by ∞, let

𝑀 = 𝑀0 ·𝑀1 · ... ·𝑀𝛼−1 · ∞
and consider ∞ to be divisible by every positive integer. We say that 𝑀 is left divisible by 𝑑 (implicitly, with

respect to the given factorization) if there exists 0 ≤ 𝑖 ≤ 𝛼 such that:

(1) 𝑀0...𝑀𝑖−1 divides 𝑑 .4

(2) Supposing (1), let 𝑐 = 𝑑/(𝑀0...𝑀𝑖−1).5 Then if 𝑖 < 𝛼 , we require in addition that 1 ≤ 𝑐 < 𝑀𝑖 .

(3) For (2) in the case 𝑖 < 𝛼 , we require in addition that 𝑐 also divides𝑀𝑖 .

Note that 𝑖 is necessarily unique if it exists. In this case, we will refer to 𝑖 as the division index and write𝑀 = 𝑑 ·𝑀 ′
.

Moreover, we will endow𝑀 ′
with the following induced factorization:

(a) If 0 ≤ 𝑖 < 𝛼 , then𝑀 ′ = 𝑀 ′
0
· ... ·𝑀 ′

𝛼−𝑖−1 · ∞ with𝑀 ′
0
= 𝑀𝑖/𝑐 > 1 and𝑀 ′

𝑗 = 𝑀𝑖+𝑗 for 0 < 𝑗 < 𝛼 − 𝑖 .

(b) If 𝑖 = 𝛼 , then𝑀 = 𝑑 · ∞ and we will let𝑀 ′ = ∞.

Furthermore, we say that𝑀 is weakly left divisible by 𝑑 if there exists 0 ≤ 𝑖 ≤ 𝛼 such that the above conditions

(1) and (2) hold, but not necessarily (3). Then we still call the (necessarily unique) 𝑖 the division index as before,

but we no longer have the factorization of𝑀 .

Note that in Definition 2.11, the term𝑀 ′
with its induced factorization can itself be considered for left divisibility

or weak left divisibility (with the step of replacing the last factor by ∞ now being superfluous).

We first consider composition in the restricted case of length 1 layouts for the second layout. To this end, we

have the following notion of “admissibility for composition”:

Definition 2.12. Let S = (𝑀0, ..., 𝑀𝛼) be a shape tuple, let 𝑀 = 𝑀0...𝑀𝛼 , and let 𝐵 = (𝑁) : (𝑟) be a layout of
length 1. Then we say that the pair {S, 𝐵} is admissible for composition (or simply admissible) if:

(1) 𝑀 is left divisible by 𝑟 . Write𝑀 = 𝑟 ·𝑀 ′
.

(2) With respect to its induced factorization,𝑀 ′
is weakly left divisible by 𝑁 .

4
If 𝑖 = 0, we regard the empty product as equal to 1, so that this is no condition.

5
If 𝑖 = 0, this means that 𝑐 = 𝑑 .

6 • Jay Shah

The idea of admissibility is that the composition 𝐴 ◦ 𝐵 of layouts will entail “dividing 𝐵 along the modes of 𝐴”.

More precisely, we have the following:

Definition 2.13. Suppose that S = (𝑀0, ..., 𝑀𝛼) is a shape tuple and 𝐵 = (𝑁) : (𝑟) is a layout of length 1 such

that {S, 𝐵} is admissible. Let D = (𝑑0, ..., 𝑑𝛼) be any stride tuple and let 𝐴 = S : D.

As in Definition 2.11, let 𝑀 = 𝑀0 · ... · 𝑀𝛼 and 𝑀 = 𝑟 · 𝑀 ′
with division index 0 ≤ 𝑖 ≤ 𝛼 . We separate the

definition of 𝐴 ◦ 𝐵 into two cases. First suppose that 0 ≤ 𝑖 < 𝛼 , so that

𝑟 = 𝑀0 · ... ·𝑀𝑖−1 · 𝑐, 𝑀 ′ = 𝑀𝑖/𝑐 · ... · ∞.

Then if 𝑁 ≤ 𝑀𝑖/𝑐 , we let 𝐴 ◦ 𝐵 = (𝑁) : (𝑐𝑑𝑖). Otherwise, we have that 𝑁 = 𝑀𝑖/𝑐 · ... ·𝑀 𝑗−1 · 𝑐 ′ (where 𝑐 ′ < 𝑀 𝑗 if

𝑗 ≠ 𝛼), and we let

𝐴 ◦ 𝐵 =

{
(𝑀𝑖/𝑐, 𝑀𝑖+1, ..., 𝑀 𝑗−1, 𝑐 ′) : (𝑐𝑑𝑖 , 𝑑𝑖+1, ..., 𝑑 𝑗−1, 𝑑 𝑗) if 𝑐 ′ > 1;

(𝑀𝑖/𝑐, 𝑀𝑖+1, ..., 𝑀 𝑗−1) : (𝑐𝑑𝑖 , 𝑑𝑖+1, ..., 𝑑 𝑗−1) if 𝑐 ′ = 1.

If instead 𝑖 = 𝛼 , then we have 𝑟 = 𝑀0 · ... ·𝑀𝛼−1 · 𝑐 as before but𝑀 ′ = ∞, and we let 𝐴 ◦ 𝐵 = (𝑁) : (𝑐𝑑𝛼).

Note that by definition the size of 𝐴 ◦ 𝐵 always equals that of 𝐵. We then have the following soundness

proposition for Definition 2.13. In the proof, we will use the following notation: for a given index 0 ≤ 𝑘 ≤ 𝛼 , let

𝛿𝑘 ∈ N×(𝛼+1)
denote the coordinate that is zero everywhere except in the 𝑘th position, where it is 1.

Proposition 2.14. In the situation of Definition 2.13, we have that 𝑓𝐴◦𝐵 = 𝑓𝐴 ◦ 𝑓𝐵 .

Proof. We carry over notation from Definition 2.13. Then with respect to the isomorphism

�̂� : N � [0, 𝑀0) × ... × [0, 𝑀𝛼−1) × N
of Definition 2.3, we have that 𝑟 is sent to 𝑐 · 𝛿𝑖 . Thus, we see that

(𝑓𝐴 ◦ 𝑓𝐵) (1) = 𝑐𝑑𝑖 = 𝑓𝐴◦𝐵 (1).
In the cases of 𝑖 < 𝛼 and 𝑁 ≤ 𝑀𝑖/𝑐 or 𝑖 = 𝛼 , this already suffices to show 𝑓𝐴◦𝐵 = 𝑓𝐴 ◦ 𝑓𝐵 . In the remaining case

𝑖 < 𝛼 and 𝑁 = 𝑀𝑖/𝑐 · ... ·𝑀 𝑗−1 · 𝑐 ′, note that
�̂� ((𝑀𝑖/𝑐)𝑟) = 𝛿𝑖+1, �̂� (𝑀𝑖+1 (𝑀𝑖/𝑐)𝑟) = 𝛿𝑖+2, ..., �̂�

(
𝑀 𝑗−1 ...𝑀𝑖+1 (𝑀𝑖/𝑐)𝑟

)
= 𝛿 𝑗 .

Therefore, we see that 𝑓𝐴◦𝐵 and 𝑓𝐴 ◦ 𝑓𝐵 agree on values {1, 𝑀𝑖/𝑐, 𝑀𝑖+1 (𝑀𝑖/𝑐), ..., 𝑀 𝑗−1 ...𝑀𝑖+1 (𝑀𝑖/𝑐)} (or drop the
last term if 𝑐 ′ = 1). In view of the multi-linearity properties of both functions,

6
this implies that 𝑓𝐴◦𝐵 = 𝑓𝐴 ◦ 𝑓𝐵 . □

Example 2.15. Let 𝐴 = (𝑀0, ..., 𝑀𝛼) : (𝑑0, ..., 𝑑𝛼) be any layout. For 𝑖 = 0, let 𝐵0 = (𝑀0) : (1), and for 0 < 𝑖 ≤ 𝛼 ,

let 𝐵𝑖 = (𝑀𝑖) : (𝑀0 · ... ·𝑀𝑖−1). Then 𝐴 ◦ 𝐵𝑖 = (𝑀𝑖) : (𝑑𝑖).

To extend from the case of length 1 layouts to general layouts for the term 𝐵 in a putative composition 𝐴 ◦ 𝐵,
we will write 𝐵 = (𝐵0, ..., 𝐵𝛽) as a concatenation of its modes and then concatenate the resulting compositions

𝐴 ◦ 𝐵0, ..., 𝐴 ◦ 𝐵𝛽 . For this to yield a correct result in general, we need to avoid potential collisions.

Definition 2.16. In the situation of Definition 2.12, let 𝑓𝐵 : [0, 𝑁) → N be the layout function, and let

𝐼 = [𝑟, 𝑟 (𝑁 − 1)] be the interval given by the convex closure of the image 𝑓𝐵 ([1, 𝑁)). Let 𝑀 ′ = 𝑀0...𝑀𝛼−1 and
𝐽 = 𝐼 ∩ [1, 𝑀 ′) (so 𝐽 = ∅ if 𝛼 = 0). Then the interval of definition for {S, 𝐵} is 𝐽 .

Definition 2.17. Let S = (𝑀0, ..., 𝑀𝛼) be a shape tuple, let 𝐵 = (𝑁0, ..., 𝑁𝛽) : (𝑟0, ..., 𝑟𝛽) be a layout, and let

𝐵𝑘 = (𝑁𝑘) : (𝑟𝑘) for 0 ≤ 𝑘 ≤ 𝛽 . Then we say that the pair {S, 𝐵} is admissible for composition if:

6
The reader should compare this situation with the obstacle that arises in the proof of Theorem 2.18 below.

A note on the algebra of CuTe Layouts • 7

(1) For all 0 ≤ 𝑘 ≤ 𝛽 , the pair {S, 𝐵𝑘 } is admissible for composition in the sense of Definition 2.12.

(2) The intervals of definition for the pairs {S, 𝐵𝑘 }0≤𝑘≤𝛽 are disjoint.

In this case, if D = (𝑑0, ..., 𝑑𝛼) is any stride tuple and 𝐴 = S : D, then we define the composition 𝐴 ◦ 𝐵 to be the

concatenated layout

𝐴 ◦ 𝐵 ≔ (𝐴 ◦ 𝐵0, 𝐴 ◦ 𝐵1, ..., 𝐴 ◦ 𝐵𝛽)
where each 𝐴 ◦ 𝐵𝑘 is defined as in Definition 2.13.

We have the following soundness theorem to validate Definition 2.17.

Theorem 2.18. In the situation of Definition 2.17, we have that 𝑓𝐴◦𝐵 = 𝑓𝐴 ◦ 𝑓𝐵 .

Proof. By Proposition 2.14, we have that for all 0 ≤ 𝑘 ≤ 𝛽 , the equality 𝑓𝐴◦𝐵𝑘
= 𝑓𝐴 ◦ 𝑓𝐵𝑘

of functions holds on

the domain [0, size(𝐵𝑘)). By Lemma 2.19, we have that the following diagram commutes:

[0, size(𝐵)) [0, size(𝐵0)) × ... × [0, size(𝐵𝛽))

N N × ... × N.

𝜄

�

𝑓𝐴◦𝐵 (𝑓𝐴◦𝐵
0
,...,𝑓𝐴◦𝐵𝛽)

+

It then suffices to see that the analogous diagram with 𝑓𝐴 ◦ 𝑓𝐵 commutes, i.e. for the diagram

[0, size(𝐵)) [0, size(𝐵0)) × ... × [0, size(𝐵𝛽))

N N × ... × N.

𝜄

�

�̂�𝐴◦𝑓𝐵 (�̂�𝐴◦𝑓𝐵
0
,...,�̂�𝐴◦𝑓𝐵𝛽)

+

Breaking out the composition, we may factor this diagram as

[0, size(𝐵)) [0, size(𝐵0)) × ... × [0, size(𝐵𝛽))

N N × ... × N

N N × ... × N

𝜄

�

𝑓𝐵 (𝑓𝐵
0
,...,𝑓𝐵𝛽)

�̂�𝐴 (�̂�𝐴,...,�̂�𝐴)

+

+

where the upper square commutes, again by Lemma 2.19.Note that the bottom square does not commute in
general (i.e., the function 𝑓𝐴 : N→ N itself is not generally additive). However, with respect to the factorization

𝑓𝐴 : N
�−→ [0, 𝑀0) × ... × [0, 𝑀𝛼−1) × N

(𝑑0,...,𝑑𝛼)−−−−−−−→ N × ... × N +−→ N,
our assumption of disjoint intervals of definition ensures that the images of the maps 𝑓𝐵0

, ..., 𝑓𝐵𝛽
are disjoint when

intersected with [0, 𝑀0) × ... × [0, 𝑀𝛼−1) − {0}. For additivity, it now suffices to check that there do not exist

distinct 𝐵𝑘 , 𝐵𝑙 and non-zero 𝑥 ∈ im

(
𝑓𝐵𝑘

)
, 𝑦 ∈ im

(
𝑓𝐵𝑙

)
that have coordinates 𝑥𝑖 , 𝑦𝑖 ∈ [0, 𝑀𝑖) for some 0 ≤ 𝑖 < 𝛼

such that 𝑥𝑖 + 𝑦𝑖 ≥ 𝑀𝑖 ; if not, we may have that

𝑓𝐴 (𝑥 + 𝑦) ≠ 𝑓𝐴 (𝑥) + 𝑓𝐴 (𝑦)
due to overflow in the 𝑖th coordinate, because the strides for the layout 𝐴 can be arbitrary. Now let𝑤𝑖0 and 𝑧 𝑗0 be

the leftmost non-zero coordinates of 𝑓𝐵𝑘
(1) and 𝑓𝐵𝑙

(1), respectively. If either of the indices 𝑖0 or 𝑗0 equal 𝛼 then

we are already done. Otherwise, we have that𝑤𝑖0 ≤ 𝑀𝑖0/2 and 𝑧 𝑗0 ≤ 𝑀 𝑗0/2 from the left divisibility assumption.

Moreover, the coordinates of subsequent values of 𝑓𝐵𝑘
and 𝑓𝐵𝑙

will increment by multiples of𝑤𝑖0 and 𝑧 𝑗0 in indices

𝑖0 and 𝑗0, by increments of 1 for indices greater than 𝑖0 and 𝑗0 up to that occupied by the maximum value, and

8 • Jay Shah

zero elsewhere. Finally, by disjointness
7
we have that either 𝑓𝐵𝑙

(1) is strictly greater than the maximum value

attained by 𝑓𝐵𝑘
or vice-versa. Putting this all together, we see that disjointness of the intervals of definition rules

out the possibility of overflow.

We conclude that when restricted to the image of (𝑓𝐵0
, ..., 𝑓𝐵𝛽

), we do have that 𝑓𝐴 distributes over addition,

which completes the proof. □

We used the following lemma about concatenated layouts in the proof of Theorem 2.18.

Lemma 2.19. Let 𝐶 = (𝐶0, ...,𝐶𝛾) be a concatenated layout. Let
𝜄 : [0, size(𝐶)) � [0, size(𝐶0)) × ... × [0, size(𝐶𝛾))

be the usual isomorphism (as in Definition 2.3). Then the following diagram commutes:

[0, size(𝐶)) [0, size(𝐶0)) × ... × [0, size(𝐶𝛾))

N N × ... × N

𝜄

�

𝑓𝐶 (𝑓𝐶
0
,...,𝑓𝐶𝛾)

+

Proof. If 𝐶0, ...,𝐶𝛾 are all length 1 layouts, then this is immediate from the definition. In general, we can take

the maximal decomposition 𝐶 = (𝐶 ′
0
, ...,𝐶 ′

𝛾 ′) where all the 𝐶 ′
𝑗 are length 1 layouts and 𝛾 ′ + 1 is the length of 𝐶 .

Then the 𝐶𝑖 will be decomposed by disjoint and convex collections of the 𝐶 ′
𝑗 in order, and we may place the

diagram in question into the larger diagram

[0, size(𝐶)) [0, size(𝐶0)) × ... × [0, size(𝐶𝛾)) [0, size(𝐶 ′
0
)) × ... × [0, size(𝐶 ′

𝛾 ′))

N N×(𝛾+1) N×(𝛾 ′+1) .

𝜄

�

𝑓𝐶 (𝑓𝐶
0
,...,𝑓𝐶𝛾)

(𝜄0, ... , 𝜄𝛾)
�

(𝑓𝐶′
0

,...,𝑓𝐶′
𝛾′
)

+ (+, ... , +)

Here, the maps 𝜄0, ..., 𝜄𝛾 are the usual isomorphisms mapping the intervals [0, size(𝐶𝑖)) to their corresponding

decompositions in terms of products of the intervals [0, size(𝐶 ′
𝑗)). Now observe that the composite map (𝜄0, ..., 𝜄𝛾)◦𝜄

is also the usual isomorphism with respect to the maximal decomposition of 𝐶 . Therefore, by definition the outer

rectangle and righthand square commute, hence the lefthand square commutes. □

Example 2.20. As in Example 2.15, let 𝐴 = S : D = (𝑀0, ..., 𝑀𝛼) : (𝑑0, ..., 𝑑𝛼) be an arbitrary layout and

𝐵0 = (𝑀0) : (1), 𝐵1 = (𝑀1) : (𝑀0), ... , 𝐵𝛼 = (𝑀𝛼) : (𝑀0...𝑀𝛼−1).
Let𝑈 ⊂ [0, 𝛼] be any nonempty subset. Then for the collection of pairs {S, 𝐵𝑘 }𝑘∈𝑈 , the intervals of definition will

be disjoint. Therefore, if we let 𝐵𝑈 be the concatenation of the 𝐵𝑘 for 𝑘 ∈ 𝑈 , then the pair {S, 𝐵𝑈 } is admissible

for composition. Explicitly, if we write𝑈 = {𝑖0, ..., 𝑖𝛾 }, then we have

𝐴 ◦ 𝐵𝑈 = (𝑀𝑖0 , ..., 𝑀𝑖𝛾) : (𝑑𝑖0 , ..., 𝑑𝑖𝛾).
We may think of precomposition with 𝐵𝑈 as a projector to the modes of 𝐴 with indices in𝑈 .

Warning 2.21. The conditions articulated in Definition 2.12 for single-mode admissibility are more relaxed than

the static assert checks carried out in CUTLASS itself.
8
Namely, our condition (1) is identical to a condition checked

by CUTLASS, whereas for condition (2), our requirement of weak left divisibility is substituted by (ordinary) left

divisibility in CUTLASS. For example, consider the layouts 𝐴 = (4, 6, 8, 10) : (2, 3, 5, 7) and 𝐵 = (6) : (12). Then
attempting to compute the composition 𝐶 = 𝐴 ◦ 𝐵 yields the error message “static assertion failed with "Static

shape_div failure"” in CUTLASS, whereas according to our rules we would compute 𝐶 as (2, 3) : (9, 5).
7
In this part of the proof it is essential that we took the convex closure of the image in Definition 2.16.

8
We thank Cris Cecka for a helpful conversation on this point.

A note on the algebra of CuTe Layouts • 9

2.3 Logical Division
With these preliminaries in place, we can define the operation of logical division.

Definition 2.22. Let 𝐴 = S : D and 𝐵 be layouts, and let𝑀 be the size of 𝐴. Suppose that the pairs {𝐵,𝑀} and
{S, 𝐵} are admissible (for complementation and composition, respectively). Then we define the logical division
𝐴/𝐵 to be the layout

𝐴/𝐵 ≔ 𝐴 ◦ (𝐵, complement(𝐵,𝑀)) .

Implicit in Definition 2.22 is the following lemma:

Lemma 2.23. Suppose 𝐴 = S : D,𝑀 = size(𝐴), and 𝐵 are as in Definition 2.22. Then {S, (𝐵, complement(𝐵,𝑀))}
is admissible for composition.

Proof. Write 𝐴 = S : D = (𝑀0, ..., 𝑀𝛼) : (𝑑0, ..., 𝑑𝛼) and 𝐵 = (𝑁0, ..., 𝑁𝛽) : (𝑟0, ..., 𝑟𝛽). Let

𝜑 : [0, 𝛽] �−→ [0, 𝛽]
be the automorphism such that 𝐵𝜑 ≔ (𝑁𝜑 (0) , ..., 𝑁𝜑 (𝛽)) : (𝑟𝜑 (0) , ..., 𝑟𝜑 (𝛽)) is sorted. Then by definition,

complement(𝐵,𝑀) =
(
𝑟𝜑 (0) ,

𝑟𝜑 (1)

𝑁𝜑 (0)𝑟𝜑 (0)
, ...,

𝑀

𝑁𝜑 (𝛽)𝑟𝜑 (𝛽)

)
:

(
1, 𝑁𝜑 (0)𝑟𝜑 (0) , ..., 𝑁𝜑 (𝛽)𝑟𝜑 (𝛽)

)
.

Now write

𝐵′
0
=
(
𝑟𝜑 (0)

)
: (1) , 𝐵′

1
=

(
𝑟𝜑 (1)

𝑁𝜑 (0)𝑟𝜑 (0)

)
:

(
𝑁𝜑 (0)𝑟𝜑 (0)

)
, ... , 𝐵′

𝛽
=

(
𝑀

𝑁𝜑 (𝛽)𝑟𝜑 (𝛽)

)
:

(
𝑁𝜑 (𝛽)𝑟𝜑 (𝛽)

)
for the length 1 layouts that comprise complement(𝐵,𝑀). We first claim that the pairs {S, 𝐵′

𝑘
} for 0 ≤ 𝑘 ≤ 𝛽

are all admissible for composition. By assumption, we have that 𝑀 is left divisible by 𝑟𝜑 (𝑘) and its remainder

is then weakly left divisible by 𝑁𝜑 (𝑘) , for all 0 ≤ 𝑘 ≤ 𝛽 . But since 𝑟𝜑 (𝑘)𝑁𝜑 (𝑘) |𝑟𝜑 (𝑘+1) for all 0 ≤ 𝑘 < 𝛽 and

𝑀 = size(𝐴), the additional divisibility condition (3) in Definition 2.11 needed to promote weak left divisibility

to left divisibility is necessarily satisfied for all the 𝑁𝜑 (𝑘) terms. Therefore, we deduce that the pairs {S, 𝐵′
𝑘
} are

indeed all admissible. Now by Proposition 2.7, we see that the additional disjointness assumption is satisfied so

that {S, (𝐵, complement(𝐵,𝑀))} is admissible for composition. □

This concludes our current treatment of logical division. For the time being, we leave further discussion of

examples of logical division to the CuTe documentation.

3 PERMUTATIONS EXPRESSIBLE AS LAYOUT FUNCTIONS
In this section, we explain how to retrieve all permutations that are expressible as layout functions in a

structured way (for some more precise motivation, we refer to Remark 3.16 below). We will assume that the

reader is familiar with the basic language of category theory, which is convenient for describing the algebraic

structure of “ordered factorizations” that naturally appears here.

Definition 3.1. We define the set ob(Fact) of ordered factorizations to consist of all expressions [𝑝1...𝑝𝑘] where
𝑘 ≥ 0 and the 𝑝𝑖 are primes (not necessarily distinct). The case 𝑘 = 0 corresponds to the empty factorization,

which we denote as [].

Example 3.2. The set ob(Fact) includes expressions such as [], [2], [3], [22], [23], [32], [232], etc.

Notation 3.3. Let 𝑘 denote the set {1, 2, ..., 𝑘} consisting of 𝑘 elements. (If 𝑘 = 0, then 0 = ∅ is the empty set.)

Definition 3.4. We define the category Fact of ordered factorizations as follows:

10 • Jay Shah

(1) ob(Fact) is the set of objects of Fact.

(2) For every expression 𝐸 = [𝑝1𝑝2 ...𝑝𝑘] in ob(Fact) and every morphism of finite sets 𝛼 : 𝑛 → 𝑘 , we have a

morphism

𝐸𝛼 = [𝑝𝛼 (1)𝑝𝛼 (2) ...𝑝𝛼 (𝑛)]
𝛼𝐸−−→ 𝐸 = [𝑝1𝑝2...𝑝𝑘]

in Fact. This defines the set of all morphisms with codomain 𝐸, and ranging over all 𝐸 thus defines the set

of all morphisms in Fact.

(3) The composition of morphisms is defined as follows. Suppose we have morphisms of finite sets 𝛼 : 𝑛 → 𝑘

and 𝛽 :𝑚 → 𝑛 and an expression 𝐸 = [𝑝1𝑝2 ...𝑝𝑘]. Write

𝐸𝛼 = [𝑝𝛼 (1)𝑝𝛼 (2) ...𝑝𝛼 (𝑛)] = [𝑞1...𝑞𝑛] .
Let 𝛾 = 𝛼 ◦ 𝛽 :𝑚 → 𝑘 . Then the composition of the morphisms

𝛼𝐸 : 𝐸𝛼 = [𝑝𝛼 (1)𝑝𝛼 (2) ...𝑝𝛼 (𝑛)] → 𝐸 = [𝑝1...𝑝𝑘], 𝛽𝐸𝛼 : (𝐸𝛼)𝛽 = [𝑞𝛽 (1) ...𝑞𝛽 (𝑚)] → 𝐸𝛼 = [𝑞1...𝑞𝑛]
is given by 𝛾𝐸 : 𝐸𝛾 → 𝐸, where we use that [𝑞𝛽 (1) ...𝑞𝛽 (𝑚)] = [𝑝𝛾 (1) ...𝑝𝛾 (𝑚)].

It’s easy to check that the composition of morphisms in Fact is associative and has identities, so Definition 3.4

really does define a category.

Notation 3.5. Let Σ𝑘 denote the symmetric group on 𝑘 letters. Given an element 𝜑 ∈ Σ𝑘 , we also denote the
associated automorphism of 𝑘 by 𝜑 .

Example 3.6. Suppose 𝐸 = [222]. Then every permutation 𝜑 ∈ Σ3 defines an automorphism 𝐸𝜑 = 𝐸 → 𝐸 in

Fact. Conversely, every automorphism of [222] uniquely corresponds to an element of Σ3.

Suppose 𝐸 = [232]. Then the transposition 𝜎 = (13) ∈ Σ3 defines an automorphism of 𝐸 since 𝐸𝜎 = 𝐸. On the

other hand, the transposition 𝜏 = (12) ∈ Σ3 defines a morphism 𝐸𝜏 = [322] → 𝐸 = [232].

Remark 3.7. Let FinSet denote the category of finite sets (or rather a skeleton, with objects given by the sets

𝑛 for 𝑛 ≥ 0). Given an object 𝑘 ∈ FinSet, let FinSet/𝑘 denote the overcategory, whose objects are morphisms

[𝛼 : 𝑛 → 𝑘] and whose morphisms are commuting triangles. Recall that this category has a final object given by

[id𝑘].

Then for every expression 𝐸 = [𝑝1...𝑝𝑘] of length 𝑘 , we have a functor
𝐹𝐸 : FinSet/𝑘 → Fact

that sends the object [𝛼 : 𝑛 → 𝑘] to 𝐸𝛼 and the unique morphism [𝛼] → [id𝑘] to 𝛼𝐸 : 𝐸𝛼 → 𝐸. This functor has

every morphism in Fact with codomain 𝐸 in its image.

Remark 3.8. In fact, we can identify Fact itself as a certain overcategory (or rather, a full subcategory thereof).

Namely, let P denote the infinite set of primes {2, 3, 5, ...}, let Set be the category of sets, and let FinSet/P be the

full subcategory of Set/P on those morphisms 𝑋 → P where 𝑋 is a finite set. Then we have an equivalence of

categories

Fact ≃ FinSet/P

that sends an expression 𝐸 = [𝑝1 ...𝑝𝑘] to the morphism 𝐸• : 𝑘 → P given by 𝑖 ↦→ 𝑝𝑖 . Under this equivalence, the

functor 𝐹𝐸 of Remark 3.7 identifies with the functor

FinSet/𝑘 ≃ (FinSet/P)/𝐸• → FinSet/P

that forgets the map to 𝐸•.

We now explain how to associate a layout to every morphism in Fact.

A note on the algebra of CuTe Layouts • 11

Definition 3.9. Suppose 𝐸 = [𝑝1...𝑝𝑘] and 𝛼 : 𝑛 → 𝑘 . We define a layout 𝐿(𝐸,𝛼) as follows:
9

(1) Its shape tuple is (𝑝𝛼 (1) , 𝑝𝛼 (2) , ..., 𝑝𝛼 (𝑛)).

(2) Its stride tuple is (𝑑1, 𝑑2, ..., 𝑑𝑛) where 𝑑𝑖 =
∏

𝑗<𝛼 (𝑖) 𝑝 𝑗 .
10

We also let 𝑓(𝐸,𝛼) denote the associated layout function.

Example 3.10. Suppose 𝐸 = [23] and 𝜑 = (12) ∈ Σ2 is the nontrivial transposition. Then 𝐿(𝐸,𝜑) = (3, 2) : (2, 1).

Suppose 𝐸 = (222) and 𝜑 = (231) ∈ Σ3, so 𝜑 is a cycle of order 3 with 𝜑 (1) = 2, 𝜑 (2) = 3, 𝜑 (3) = 1. Then

𝐿(𝐸,𝜑) = (2, 2, 2) : (2, 4, 1).

Remark 3.11. Let 𝐸 = [𝑝1 ...𝑝𝑘] and 𝛼 : 𝑛 → 𝑘 . Let 𝑁 = 𝑝1 · ... · 𝑝𝑘 and 𝑁𝛼 = 𝑝𝛼 (1) · ... · 𝑝𝛼 (𝑛) . In what follows,

consider the canonical isomorphisms

[0, 𝑁) � [0, 𝑝1) × [0, 𝑝2) × ... × [0, 𝑝𝑘),
[0, 𝑁𝛼) � [0, 𝑝𝛼 (1)) × [0, 𝑝𝛼 (2)) × ... × [0, 𝑝𝛼 (𝑛))

Then the associated layout function 𝑓(𝐸,𝛼) : [0, 𝑁𝛼) → [0, 𝑁) ⊂ N can be described as the multilinear function

[0, 𝑝𝛼 (1)) × [0, 𝑝𝛼 (2)) × ... × [0, 𝑝𝛼 (𝑛)) → [0, 𝑝1) × [0, 𝑝2) × ... × [0, 𝑝𝑘)

that sends the basis vector 𝛿𝑖 for 1 ≤ 𝑖 ≤ 𝑛 to 𝛿𝛼 (𝑖) , and which restricts to an isomorphism [0, 𝑝𝛼 (𝑖))
�−→ [0, 𝑝𝛼 (𝑖))

for all 1 ≤ 𝑖 ≤ 𝑛. In particular, if 𝛼 is itself a bijection, then 𝑓(𝐸,𝛼) restricts to an automorphism of [0, 𝑁).

Elaborating on Remark 3.11, we have the following lemma, which indicates that composition in the category

Fact is compatible with the composition of layout functions.

Lemma 3.12. Suppose we have morphisms of finite sets 𝛼 : 𝑛 → 𝑘 , 𝛽 :𝑚 → 𝑛 and an expression 𝐸 = [𝑝1𝑝2...𝑝𝑘].
Write 𝛾 = 𝛼 ◦ 𝛽 . Consider the composition

𝛾𝐸 : 𝐸𝛾 = (𝐸𝛼)𝛽
𝛽𝐸𝛼−−−→ 𝐸𝛼

𝛼𝐸−−→ 𝐸

in Fact. Then the associated layout functions satisfy the composition equality

𝑓(𝐸,𝛾) = 𝑓(𝐸,𝛼) ◦ 𝑓(𝐸𝛼 ,𝛽) .

Proof. Let 𝑁 = 𝑝1 · ... ·𝑝𝑘 , 𝑁𝛼 = 𝑝𝛼 (1) · ... ·𝑝𝛼 (𝑘) , and 𝑁𝛾 = 𝑝𝛾 (1) · ... ·𝑝𝛾 (𝑚) . We use the canonical isomorphisms

[0, 𝑁) � [0, 𝑝1) × [0, 𝑝2) × ... × [0, 𝑝𝑘),
[0, 𝑁𝛼) � [0, 𝑝𝛼 (1)) × [0, 𝑝𝛼 (2)) × ... × [0, 𝑝𝛼 (𝑛))
[0, 𝑁𝛾) � [0, 𝑝𝛾 (1)) × [0, 𝑝𝛾 (2)) × ... × [0, 𝑝𝛾 (𝑚))

to write the domains and codomains of the layout functions in question (noting that 𝑓(𝐸𝛼 ,𝛽) has codomain lying

inside [0, 𝑁𝛼)). We are trying to equate the multilinear function

𝑓(𝐸,𝛾) : [0, 𝑝𝛾 (1)) × [0, 𝑝𝛾 (2)) × ... × [0, 𝑝𝛾 (𝑚)) → [0, 𝑝𝛼 (1)) × [0, 𝑝𝛼 (2)) × ... × [0, 𝑝𝛼 (𝑛))
with the composition of the two multilinear functions

𝑓(𝐸𝛼 ,𝛽) : [0, 𝑝𝛾 (1)) × [0, 𝑝𝛾 (2)) × ... × [0, 𝑝𝛾 (𝑚)) → [0, 𝑝𝛼 (1)) × [0, 𝑝𝛼 (2)) × ... × [0, 𝑝𝛼 (𝑛))
𝑓(𝐸,𝛼) : [0, 𝑝𝛼 (1)) × [0, 𝑝𝛼 (2)) × ... × [0, 𝑝𝛼 (𝑛)) → [0, 𝑝1) × [0, 𝑝2) × ... × [0, 𝑝𝑘).

But since basis vectors are mapped to basis vectors by Remark 3.11, it suffices to check the desired equality on

basis vectors, which is straightforward. □
9
If 𝑛 = 0, then we let 𝐿(𝐸,𝛼) be the “trivial layout” (1) : (1) .

10
In particular, 𝑑𝑖 = 1 if 𝛼 (𝑖) = 1.

12 • Jay Shah

Warning 3.13. In Lemma 3.12, the per-mode condition of admissibility for composition (Definition 2.12) is

obviously satisfied. However, the disjointness condition in Definition 2.17 may be violated in the case where

𝛽 :𝑚 → 𝑛 is not an injective function. This isn’t a contradiction with the prior analysis carried out in the proof

of Theorem 2.18, since there we were concerned with the composition being well-defined in the situation of

arbitrary strides for the second layout.

We now define a “realization” functor from Fact to FinSet that sends morphisms of ordered factorizations to

their associated layout functions.

Definition 3.14. Let 𝑅 : Fact → FinSet be the functor defined as follows:

(1) Let 𝐸 = [𝑝1 ...𝑝𝑘] be an object of Fact and let 𝑁 = 𝑝1 · ... · 𝑝𝑘 . Then 𝑅(𝐸) = [0, 𝑁).11

(2) For every morphism 𝛼𝐸 : 𝐸𝛼 → 𝐸, let 𝑅(𝛼𝐸) = 𝑓(𝐸,𝛼) : [0, 𝑁𝛼) → [0, 𝑁) be as in Definition 3.9.

By Lemma 3.12, 𝑅 : Fact → FinSet does indeed define a functor since it respects the composition of morphisms

(and identities as well, obviously).

We note that 𝑅 doesn’t contain every possible function expressible as a layout function in its image. However,

it does contain every automorphism [0, 𝑁) �−→ [0, 𝑁) expressible as a layout function in its image.

Proposition 3.15. Let 𝑁 > 0 be a positive integer and let 𝑓 : [0, 𝑁) → [0, 𝑁) be an automorphism such that
there exists a layout 𝐿 of size 𝑁 with 𝑓 = 𝑓𝐿 .12 Then 𝑓𝐿 is in the image of the realization functor 𝑅.

Proof. Without loss of generality, we may suppose that the shape tuple of 𝐿 is given by (𝑝1, 𝑝2, ..., 𝑝𝑘) where
the 𝑝𝑖 are all prime numbers and 𝑁 = 𝑝1 · ... · 𝑝𝑘 .13 So we may write 𝐿 = (𝑝1, 𝑝2, ..., 𝑝𝑘) : (𝑑1, 𝑑2, ..., 𝑑𝑘). Then the

sort of 𝐿 must be of the form

𝐿𝜑 ≔ (𝑝𝜑 (1) , 𝑝𝜑 (2) , ..., 𝑝𝜑 (𝑘)) : (1, 𝑝𝜑 (1) , 𝑝𝜑 (1)𝑝𝜑 (2) , ...,Π1≤𝑖<𝑘𝑝𝜑 (𝑖))
for some permutation 𝜑 ∈ Σ𝑘 , in order for 𝑓𝐿 to be an automorphism of [0, 𝑁). But this means that if we let

𝜓 = 𝜑−1
be the inverse permutation, then

𝜓𝐸 : 𝐸𝜓 = [𝑝1𝑝2...𝑝𝑘] = [𝑝𝜓 (𝜑 (1))𝑝𝜓 (𝜑 (2)) ...𝑝𝜓 (𝜑 (𝑘))] → 𝐸 = [𝑝𝜑 (1)𝑝𝜑 (2) ...𝑝𝜑 (𝑘)]
is a morphism in Fact such that 𝑅(𝜓𝐸) = 𝑓𝐿 = 𝑓 . □

Remark 3.16. One way to interpret Proposition 3.15 is that if we take the maximal subgroupoid Fact≃ inside

Fact (i.e., the subcategory on all invertible morphisms), then

𝑅 : Fact≃ → FinSet

carves out exactly those permutations expressible as layouts. Our motivation for this description is that for a

fixed integer 𝑁 > 0, the subset Σ𝐿
𝑁
of Σ𝑁 on those automorphisms expressible as layout functions is typically not

a subgroup (being not generally closed under the group multiplication, i.e. composition). Instead, if we let

Fact≃𝑁 ⊂ Fact≃

be the full subgroupoid on those objects [𝑝1 ...𝑝𝑘] with 𝑁 = 𝑝1 · ... · 𝑝𝑘 , then Σ𝐿
𝑁
consists of those morphisms in

the image of 𝑅 on Fact≃
𝑁
. However, we see that Σ𝐿

𝑁
is closed under the operation of taking the group inverse.

Moreover, in the special case that 𝑁 is a prime power 𝑝𝑘 , then Σ𝐿
𝑁
is in fact a subgroup and is isomorphic to Σ𝑘 .

This corresponds to Fact≃
𝑝𝑘

being a groupoid with one object [𝑝𝑝...𝑝], i.e., a group.
11
If 𝐸 = [], this means that 𝑅 (𝐸) = [0, 1) = {0}.

12
A priori, the codomain of 𝑓𝐿 is N, so part of this assertion is that 𝑓𝐿 restricts to an automorphism of [0, 𝑁) .

13
The point is that we may always maximally “uncoalesce” a layout through factoring integers appearing in the shape tuple and then inserting

strides as appropriate to match the layout functions.

A note on the algebra of CuTe Layouts • 13

REFERENCES
[1] CUTLASS — CUDA Templates for Linear Algebra Subroutines. https://github.com/NVIDIA/cutlass.

[2] CuTe Layout Operations. https://github.com/NVIDIA/cutlass/blob/main/media/docs/cute/02_layout_operations.md.

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass/blob/main/media/docs/cute/02_layout_operations.md

	1 Introduction
	2 Layout algebra
	2.1 Complementation
	2.2 Composition
	2.3 Logical Division

	3 Permutations expressible as layout functions
	References

