Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2

1 INTRODUCTION

We recently released an update to our FlashAttention-2 forward pass implementation on NVIDIA Hopper
architecture that incorporates a number of new optimizations and improvements, including a software pipelining
scheme and FP8 support. In this blog post, we will explain a challenge with achieving layout conformance of register
fragments for WGMMA instructions that we encountered in the process of fusing back-to-back mixed-precision
GEMMs with FP8 operands and FP32 accumulator. After explaining why this problem surfaces for FP8 but not FP16
precision operands, we’ll describe a performant method to achieve layout conformance through using a concise
combination of two NVIDIA® CUDA® intrinsics — namely, the byte permute and shuffle sync instructions. Qur
solution takes some inspiration from a blog post of Manish Gupta that studied a similar problem in the context
of mixed-input GEMMs. Furthermore, we’ll discuss another complication that arises with the majorness of the V'
matrix for FP8 WGMMA. Finally, we will present some FLOPs/s benchmarks collected from runs with synthetic data
on the NVIDIA® H100 Tensor Core GPU with SXM5 board form factor. In particular, for head dimension 256 and
large sequence length, we obtain over I petaflop/s of performance. This is consistent with other claims on FP8 fused
attention performance in the same regime, e.g. by HippoAttention.

2 RECOLLECTIONS ON FLASHATTENTION-2

FlashAttention-2 is a memory-aware algorithm for multi-head attention (MHA) that was introduced by Tri Dao last
year, building on earlier work of Dao and his collaborators. It serves as blueprint for implementing MHA as a fused
CUDA kernel (FMHA), in which intermediate steps of the attention computation

1
Vd
aren’t read back to HBM (i.e., global memory), but rather kept in shared memory or in registers. The key idea of
FlashAttention-2, as well as the original FlashAttention, is to leverage tiling of the input tensors Q, K, V in conjunction

with the online-softmax algorithm, which allows one to circumvent keeping the entire S matrix live for the softmax
calculation.

O = softmax (QKT) V = softmax(S)V = PV

Apart from the algorithm itself, there are a number of interesting challenges in terms of optimization to get a
performant implementation on modern GPUs, in particular those built on NVIDIA Hopper architecture like the
H100 GPU. For example, to make optimal use of the Tensor Cores on an H100 GPU for carrying out the matrix
multiplications in FMHA, it’s important to target the new Hopper-specific WGMMA instructions as well as the
Tensor Memory Accelerator (TMA) for loads from global to shared memory. We described how to accomplish this
using tools from NVIDIA’s open-source CUTLASS library in our paper from last December. There, we chose to
work with half-precision FP16 input tensors Q, K, V for the head-to-head performance comparison with Dao’s base
implementation written for NVIDIA Ampere architecture. However, in practice we want to transition to even lower
precision types, in keeping with the philosophy of model quantization. Therefore, as a first step we need to understand
how to accommodate FP8 input tensors in the design of the FMHA kernel.

In what follows, when we discuss invoking WGMMA (that is, wgmma . mma_async in PTX) to multiply matrices such
as QKT or PV, we will implicitly be referring to tiles of these matrices. For example, we could choose 64 X 64 tiles.

3 THE CHALLENGE WITH FP8: LAYOUT CONFORMANCE OF WGMMA REGISTER FRAGMENTS

WGMMA is warpgroup-level, so involves 128 threads (4 warps) to carry out the MMA. When invoking a WGMMA
instruction, accumulation occurs in those threads’ registers. It is then paramount to understand the thread ownership
pattern, i.e. register fragment layout, of the entries of the result matrix, as prescribed by WGMMA. For example, we
have the following layout for a slice of the FP32 accumulator tile, which is extracted from Figure 119 in the PTX
documentation.

Date: March 10, 2024. Email: research@colfax-intl.com.

https://github.com/ColfaxResearch/cutlass-kernels/tree/master/src/fmha-pipeline
https://blog.research.google/2024/01/mixed-input-matrix-multiplication.html
https://blog.hippoml.com/petaflops-inference-era-1-pflops-attention-and-preliminary-end-to-end-results-21f682cf2ed1
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2312.11918
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html##wgmma-64n16-d
research@colfax-intl.com

2« Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2

Row 0 | T0{d0,d1} | T1{do,d1} | T2{d0,d1} | T3{do,d1} | To{d4,d5} | T1{d4,d5} | T2{d4,d5} | T3 {d4, d5}
Row 8 | T0{d2,d3} | T1{d2,d3} | T2{d2,d3} | T3{d2,d3} | T0{d6,d7} | T1{d6,d7} | T2{de,d7} | T3{de,d7}

Fig. 1. FP32 accumulator register WGMMA layout — threads 0-3, entries 0-7.

In Figure 1, we took the subset of the 64 X N output tile consisting of the two rows 0 and 8 and columns 0-15.
Figure 1 then indicates that these entries are evenly divided among threads 0-3. Moreover, the entries are arrayed
contiguously in each thread’s registers according to the d index. This is the register fragment layout that would
appear as part of the wgmma . mma_async calls for computing either QK or PV in FMHA, for instance, and regardless
of the precision type of the operands given FP32 accumulator.

When invoking WGMMA to do a matrix multiplication AB, you have the option of arranging for the operand A to
either be in shared memory or in registers (by contrast, operand B must always be in shared memory). For the second
GEMM PV in FMHA, we want to use the option of keeping the first operand in registers for performance reasons,
avoiding unnecessary writes and reads with shared memory. In order to compute a correct result, we then need to
match the FP32 accumulator register fragment layout to either the FP16 or FP8 operand A register fragment layout.
To be more precise, we should first downcast the entries held in registers in place to the desired precision format, and
then potentially do some register movement, both within and across threads.

This sounds complicated, and it turns out to involve some non-trivial maneuvers in the case of FP8, but let us first
point out that one doesn’t need to do any register movement at all in the case of FP16. This is because the layouts in
question are then identical: just compare Figure 119 and Figure 118 in the PTX documentation. In fact, this makes it
easy to take our FP16 FMHA kernel and allow for the input tensors Q and K to be FP8 while still fixing the input
tensor V to be FP16. We call this the “FP8 hybrid” FMHA kernel, which is akin to the FP8 version of FMHA in the
Triton tutorial.

Let’s now consider the case at hand, with all three tensors Q, K, V in FP8 precision. Consider the following extract
from Figure 122 in the PTX documentation:

Row 0 | T0{a0,a1} | T0{a2,a3} | T1{a0,al} | T1{a2,a3} | T2{a0,al} | T2{a2,a3} | T3{a0,al} | T3{a2, a3}
Row 8 | T0{a4,a5} | T0{a6,a7} | T1{ad,a5} | T1{a6,a7} | T2{a4,a5} | T2{a6,a7} | T3{ad,a5} | T3{a6,a7}

Fig. 2. FP8 operand A register WGMMA layout - threads 0-3, entries 0-7.

This is the thread ownership pattern, or layout conformance requirement, that must be satisfied prior to invoking
an FP8 WGMMA. For example, according to Figure 2, we need to arrange that thread 0 has these 8 entries in its
registers in order:

Todo, Ted1, T1de, T1dl, Ted2, Ted3, Tid2, T1d3.

In particular, observe that we will need to exchange data among threads to achieve layout conformance.

4 THE SOLUTION: BYTE PERMUTE AND SHUFFLE SYNC

Our solution in code is exposed on our repo via ReorgCFp8toAFp8, which we invoke in the consumer path of the
pipelined implementation immediately before the second gemm call. Invoking that method on the CUTLASS Tensor
tSrSPrec (the FP8 downcasted register fragment Tensor) accomplishes the data movement depicted in Figure 3, going
from top to bottom.

In Figure 3, each box represents two entries from Figure 1 of the same thread and color combined. Keeping in mind
that the entries have been downcasted to FP8, each box is then 16 bits wide. We then accomplish the register data
movement in code by invoking a combination of the following two CUDA intrinsics:

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html##wgmma-64n16-d
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html##wgmma-64n16-a
https://github.com/openai/triton/blob/53d868113a706988394134ca1f7f85cb3016cc81/python/tutorials/06-fused-attention.py##L605
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html##wgmma-64n32-a
https://github.com/ColfaxResearch/cutlass-kernels/blob/master/src/fmha-pipeline/reg2reg.h##L45
https://github.com/ColfaxResearch/cutlass-kernels/blob/master/src/fmha-pipeline/fmha_consumer.h##L57

Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2 « 3

[To[mo|To[T0o| [[m|mi[m] [T2]T2|T2|T2] [13][T3]13]T13]
To[mo o [T [i|[m | [T [T2|T2|T2[T2] [13][T3] 13]T13]
To|mo | i |m | [m]m|e[Tm] [n|T|To][T0] [T2[T2] T3] T3]
| To|Ti[mo]m]| [T2|[m[m2[m] [To|Ti|[To][T1] [T2[T13[T2] 13]

Fig. 3. lllustration of register data movement to satisfy layout conformance requirements of FP8 WGMMA.

(1) Between the first and second rows, and between the third and fourth rows, we don’t have to exchange data
between threads, only internally within a thread. To do this, we use __byte_perm: given two 32-bit unsigned
integers x and y, __byte_perm(x,y,s) returns 4 bytes from the 8 input bytes as specified by the selector s.

For example, we can do a swap using __byte_perm as follows. From the top, for a given thread let upper be
the first 4 bytes (those in light and dark blue) and let lower be the last 4 bytes (those in light and dark yellow).
Then for threads 1 and 2, we swap as indicated by calling __byte_perm with the following selectors:

auto upper@ = __byte_perm(upper, lower, 0x7654);
auto lowero byte_perm(upper, lower, 0x3210);

(2) Between the second and third row, we exchange data among threads using __shf1l_sync. Observe that the
upper and lower blocks of 4 bytes are each exchanged among themselves. Moreover, the shuffling of the upper
blocks differs from that of the lower blocks, and both shuffles depend on the thread index mod 4. We account
for this using two pre-defined arrays to call __shf1l_sync with the correct srcLane parameter. Specifically, we
define

int upper_map[4] = {0,3,1,2};
int lower_map[4] = {1,2,0,3};

and then for the register movement we invoke

upper® = __shfl_sync(uint32_t(-1), upper®, upper_map[threadIdx.x%4], 4);
lower® = __shfl_sync(uint32_t(-1), lower@, lower_map[threadIdx.x%4], 4);

5 AN ADDED WRINKLE: TRANSPOSING THE V MATRIX OFFLINE

We’ve been thinking about Q, K, V' as matrices for the attention formula, but for the attention layer the Q, K,V
are actually 4-dimensional tensors, with dimensions given by the batch size B, sequence length S, numbers of heads
H, and head dimension D. For our FP16 FMHA kernel, we conformed to a certain convention regarding how these
tensors are arrayed in memory. Namely, we supposed that they are packed in the (B, S, 3, H, D) format. Then when
loading tiles from global to shared memory via TMA, this convention forces the 2-dimensional Q, K, V tiles to be
contiguous in the head dimension and strided in the sequence length dimension.

Given a gemm call to multiply A - BT for an M x K-matrix A and an N X K-matrix B, we say that the A resp. B
operand is mn-major if it is contiguous in the M resp. N dimension (or outer dimension), and k-major if is instead
contiguous in the K-dimension (or inner dimension). Then given the (B, S, 3, H, D) convention, for the first GEMM
QKT the 2nd operand is k-major, whereas for the second GEMM PV the 2nd operand is mn-major. Fortuitously, for
FP16 precision this distinction turns out to be immaterial since WGMMA accepts both k-major or mn-major for its
2nd operand. However, this is no longer the case for FP8 precision. Therefore, we need to either transpose the V

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__INT.html##group__CUDA__MATH__INTRINSIC__INT_1g0b8b8156fe619205bf8d65acd8f29131
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##warp-shuffle-functions
https://github.com/ColfaxResearch/cutlass-kernels/blob/master/src/fmha-pipeline/reg2reg.h##L50
https://github.com/ColfaxResearch/cutlass-kernels/blob/master/src/fmha-pipeline/reg2reg.h##L98

4« Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2

tensor as a preprocessing step before calling our FP8 FMHA kernel (but not the FP8 hybrid version!), or otherwise
handle the transpose elsewhere, such as fusing it to the epilogue of the projection that creates the V tensor.

6 FLOPS BENCHMARKS

1,000 |- 967 b

900 |- *

800 |- *
727
700 |- 683 |

617

600

555

513

505

TFLOPs/s

500

400

300

200

100

FP16 FP8 Hybrid FP8

In HEAD64 00 HEAD128 I HEAD256

Fig. 4. Performance of FMHA forward pass (non-causal) on NVIDIA H100 SXM5 GPU for different precision types and head
dimensions, measured over 1000 iterations. Fixed parameters: seqlen=4096, batch size=4, #heads=2048/headdim. FP8 is E4AM3.

Figure 4 shows the FLOPs/s improvements we see from moving to lower precision types. Runs were conducted
with synthetic data drawn from a normal distribution with mean 0 and variance 1. To interpret the figure correctly,
recall from above that FP8 Hybrid refers to the FMHA kernel in which the Q and K tensors are FP8 and V is FP16,
and note that the TFLOPs/s reported for FP8 don’t include the cost of transposing V since that is a pre-processing
step that is expected to be accounted for elsewhere.

In our experiments, we have tuned the number of pipeline stages as well as the tile sizes used in WGMMA
independently for each kernel: we have configurable parameters QBLKSIZE and KBLKSIZE for tiling along the
sequence length of Q and K, V respectively (note that we never divide along the head dimension). We see that the
largest improvement going from FP8 Hybrid to FP8 occurs in the case of head dimension 256. This happens because
keeping V as FP8 reduces pressure on the shared memory, enabling us to set both QBLKSIZE and KBLKSIZE to 128.

Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2 « 5

Apart from the set of parameters chosen for Figure 4, we can also find parameters that showcase over 1 petaflop/s
of performance through increasing the sequence length. For example, for sequence length 8448 = 64 - 132 we have:

dgxuser@PM-DGX-H100:~/kernels$./fmha_fp8_pipe_128x128xCTA256 --batch-size=4 --seq-
length=8448 --head-size=256 --iterations=1000
Using device @: NVIDIA H100 80GB HBM3 (SM9@, 132 SMs)

M = 8448

N = 8448

K = 256

QBLK = 128

KBLK = 128

L=32:8%4

CUTE_FMHA: [1028661.0]Gflop/s (2.2735)ms

Or if we let sequence length be 16896 = 2 - 8448, then we have:

dgxuser@PM-DGX-H100:~/kernels$./fmha_fp8_pipe_128x128xCTA256 --batch-size=2 --seq-
length=16896 --head-size=256 --iterations=1000
Using device @: NVIDIA H100 80GB HBM3 (SM9@, 132 SMs)

M = 16896

N = 16896

K = 256

QBLK = 128

KBLK = 128

L=16 : 8 x 2

CUTE_FMHA: [1057474.8]1Gflop/s (4.4230)ms

For these examples, multiples of 132 were chosen to account for wave quantization effects.

Finally, for ease of reproducibility we give our autotuned parameters for the different kernels:

HEADDIM PRECTYPE | PARAMETERS

64 FP16 QBLKSIZE=64 KBLKSIZE=128 CTA128 NOPIPE
128 FP16 QBLKSIZE=128 KBLKSIZE=128 CTA256 STAGES=3
256 FP16 QBLKSIZE=128 KBLKSIZE=64 CTA256 STAGES=3
64 FP8 HYB QBLKSIZE=64 KBLKSIZE=128 CTA128 NOPIPE
128 FP8 HYB QBLKSIZE=64 KBLKSIZE=128 CTA128 NOPIPE
256 FP8 HYB QBLKSIZE=128 KBLKSIZE=64 CTA256 STAGES=3
64 FP8 QBLKSIZE=64 KBLKSIZE=128 CTA128 NOPIPE
128 FP8 QBLKSIZE=64 KBLKSIZE=128 CTA128 NOPIPE
256 FP8 QBLKSIZE=128 KBLKSIZE=128 CTA256 STAGES=3

Table 1. Choice of tile sizes, 1 or 2 warpgroups, and pipelining for the kernels in Figure 4.

In Table 1, NOPIPE refers to replacing the software pipelining by our original copy/gemm overlapping scheme
described in section §6 of our paper. Also, with NOPIPE we don’t use the QINRMEM option, while with the default
pipelined version (STAGES=3) we do use QINRMEM.

7 ADDENDUM: ACCURACY LOSS WITH FP8

As always with moving to lower precision types, the concomitant effects on accuracy loss have to be understood
and managed correctly. We leave this important topic to future work. For now, we can report the root-mean-square

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html##wave-quant
https://arxiv.org/abs/2312.11918

6 + Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2

parameters fixed as in Figure 4):

error taken between the output matrix and a reference calculation in Table 2 (with the same synthetic data and other

HEADDIM FP16 FP8 Hybrid FP8
64 7.3270e-06 8.3045e-06 6.5493e-04
128 7.3099e-06 1.0216e-05 6.5261e-04
256 7.2918e-06 1.3937e-05 6.5124e-04

Table 2. RMSE for different precision types and head dimensions.

In Table 2, the reference calculation is done on the Q, K, V tensors generated in the given precision type and then

upcasted to FP32.
8 ACKNOWLEDGMENTS

We would like to thank Tri Dao for helpful comments on an earlier draft and Ying Zhang from the PyTorch team

for pointing out the wave quantization optimization to us.

	1 Introduction
	2 Recollections on FlashAttention-2
	3 The challenge with FP8: layout conformance of WGMMA register fragments
	4 The Solution: Byte Permute and Shuffle Sync
	5 An added wrinkle: transposing the V matrix offline
	6 FLOPS benchmarks
	7 Addendum: accuracy loss with FP8
	8 Acknowledgments

