


NEURAL NETWORKS
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THE END IS NIGH
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Physics Limits Transistor Size Precision Can Only Go So Low
Cost of Operations
Relative Energy Cost Relative Area Cost
RISE OF GPU CQHPMHG Operation: Energy (pJ) Area (um2)
i ' 8b Add | 003 36 |
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ANALOG COMPUTING

* The idea is to use electrical circuits to
emulate arithmetic, differential
equations, integration

* Replace Boolean math with continuous
variables represented by currents,

voltages, and charges

* Example:
https: / /courses.engr.illinois.edu/ece486 /
fa2023 /laboratory /docs/lab1 /analog

computer _manual.pdf

Determine the analog diagram and circuit to implement the equation

V, = -0.35V; +5.24V, + 2.6. (1.17)

Solution: The analog diagram is given in Figure 1.12 and the electrical circuit in Figure 1.13. A
GP-6 wiring diagram is supplied in Figure 1.14 to illustrate the actual connections needed.
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Figure 1.12: Analog Diagram for Example 1.2.
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Figure 1.13: Circuit Diagram for Example 1.2.
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DIGITAL VS ANALOG ARITHMETIC

MULTIPLY

Round

RETURN

LOG

LOG

ANTILOG

Bcy

MULTIPLICATION



ANALOG MULTIPLICATION CIRCUIT

* The operand values are represented

by the input and output voltages

* Transistors and operational amplifiers

implement logarithmic and

exponential functions

* Far fewer transistors than a digital

circuit; result decided by physics




IBM ANALOG IN-MEMORY CHIP

* Nature article: submitted 12/2022,
published 08 /2023

https: //www.nature.com/articles/s41

586-023-06337-5

* Summary:

https:/ /research.ibm.com /blog/analo

g-ai-chip-low-power



https://www.nature.com/articles/s41586-023-06337-5
https://www.nature.com/articles/s41586-023-06337-5
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LOW-POWER, FAST Al

* |deas:
* Analog multiplication and addition = low energy
* In-memory compute = log power
* Data parallelism of fully-connected DNNs = fast

* NVMe memory for weights, analog peripheral circuitry

* Preliminary results:

* 12.4 TOPS/W (est. 14x better than digital circuitry)



PHASE CHANGE MEMORY

“Phase-change memory (PCM) works when an electrical pulse is applied to a
material, which changes the conductance of the device. The material switches
between amorphous and crystalline phases, where a lower electrical pulse
will make the device more crystalline, providing less resistance, and a high
enough electrical pulse makes the device amorphous, resulting in large
resistance. Instead of recording the usual Os or 1s you would see in digital
systems, the PCM device records its state as a continuum of values between
the amorphous and crystalline states... The memory is non-volatile, so the
weights are retained when the power supply is switched off.”



IBM CHIP ARCHITECTURE

* Six tiles storing model weights

* Six ILP/OLP (input/output landing planes)

pairs converting UINT8 inputs to elements of

pulse-modulated durations
* A 512x2048 PCM crossbar in every tile

* After MAC, the charge on peripheral
capacitors is converted into durations and sent

either to other tiles or to the OLP




PULSE WIDTH MODULATION (PWM)
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WEIGHT ENCODING WITH PCM
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NOT A COMPLETE PRODUCT

* No on-chip computing cores or static random access memory for auxiliary

operations, so conducting aux operations off-chip

* RelU can be implemented in the analog domain



TEST 1: KEYWORD

* Take a pre-trained fully-connected
(FC) network

* Retrain using HWA techniques to

make it more resilient to analog noise
* L2 regularize and bias remove

* Prune to 1024 inputs
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TEST 2: RNNT
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* 14x (projected) system energy
efficiency improvement over the
best result submitted to MLperf




OTHER PLAYERS: MYTHIC

* https://mythic.qi
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https://mythic.ai/

OTHER PLAYERS: ASPINITY

* https://www.aspinity.com/

CMOS 10-bit NVM

* Analog circuits co-located A

with memory A M L.I 0 O
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https://www.aspinity.com/

PROGRAMMABLE RESISTORS (MIT)

* https://www.science.org/doi/10.1126/s

cience.abp8064

* “The core idea behind analog training
accelerators is to process information
locally using physical device properties
instead of conventional Boolean
arithmetic—i.e., using Ohm’s and
Kirchhoff’s laws for the matrix inner
product and threshold-based updating

for the outer product.”
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Fig. 2. Ultrafast and energy-efficient modulation characteristics of protonic programmable resistors.
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(A) Modulation performance of a 50-nm-by-150-nm protonic device with 10-nm PSG, showing fast (5 ns
per pulse), nearly linear, and symmetric characteristics. W, width; L, length. (B) Retention behavior of the
protonic device for =100 s at different conductance levels over the full dynamic range. (C) Endurance char-
acterization of the protonic device, displaying nondegrading modulation over 10° pulses conducted over 30

hours.


https://www.science.org/doi/10.1126/science.abp8064
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NEUROMORPHIC COMPUTING (INTEL)

* https://www.intel.com/content/www /us/en/r

esearch /neuromorphic-computing.html

* “Spiking neural networks (SNNs), novel
models that simulate natural learning by
dynamically re-mapping neural networks, are
used in neuromorphic computing to make
decisions in response to learned patterns over
time. Neuromorphic processors leverage these
asynchronous, event-based SNNs to achieve
orders of magnitude gains in power and
performance over conventional architectures.



https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
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