Custom CUDA and Python

Compiled vs Interpreted

e Compiled languages are translated into machine code directly by compilers.
o C/C++, Java, CUDA
o executables
e Interpreted languages are read by the interpreter program and translated
o Python, Javascript
O scripts

e |n order to use compiled code in an interpreted language, we need to give the

interpreter program the “translation”.

o Just-in-time compilation: PyCUDA, PyTorch JIT
o Python binding: PyBind11, Cython

The Al developers

e Data scientists: (the drivers)
o The end user.
o High-level Python code and Al frameworks
e Developers/Researchers: (car mechanics/designers)
o Writes Al frameworks, builds novel prototype models
o Python and C++/CUDA
o Python bindings
e Performance engineers: (engine designers/manufacturers)

o Writes optimized kernels
o C++/CUDA

Option: Just-in-time (JIT) compilation. PyCUDA example.

e C/C++/CUDA code is compiled on the fly as the Python code is executed.

mod = SourceModule("""
__global__ void doublify(float *a)
{
int idx = threadIdx.x + threadIdx.yx4;
alidx] *x= 2;
}

mmn)

func = mod.get_function("doublify")
func(a_gpu, block=(4,4,1))

e User system must compile at runtime.
o Must have the correct environment and flag sets for compilation.
o May take some time

e May not always be supported

Option: Python bindings. PyBind11 example.

e C/C++/CUDA code is compiled ahead of time, and bound to a python method.

__global__ void doublify_kernel(float *A) {
int idx = threadIdx.x + threadIdx.yx4;
alidx] x= 2;

}

void doublify(float *A) {
// .. allocate and transfer A ...//
doublify<<<4,4,1>>>(A);
// .. retrieve a ...//

}

PYBIND11_MODULE (example, m) {
m.def("doublify", &doublify, "A function that doubles 4x4 matrix");

}

e Less flexible; only supports what the developer compiled.

e Limited support for CUDA (no setuptools support)
o Couple poorly maintained 3rd party repo, or util as part of frameworks (PyTorch)

Takeaways

e Python/CUDA interfacing needed in Al
o Al end users prefer Python, whereas CUDA and GPU developers favor C/C++
o Framework developers and researchers use Python binding or JIT compilation bridge the gap.
e JIT compilation
o Example: PyCUDA
o More flexible, but require correct environment, compilation time, and often C/C++ knowledge.
o Is not always supported.
e Python bindings
o Example: PyBind11
o Less flexible, but developer controls the compilation and usually no C/C++ knowledge required.
o Less official support.

