
Custom CUDA and Python

Compiled vs Interpreted

● Compiled languages are translated into machine code directly by compilers.
○ C/C++, Java, CUDA
○ executables

● Interpreted languages are read by the interpreter program and translated
○ Python, Javascript
○ scripts

● In order to use compiled code in an interpreted language, we need to give the
interpreter program the “translation”.
○ Just-in-time compilation: PyCUDA, PyTorch JIT
○ Python binding: PyBind11, Cython

The AI developers

● Data scientists: (the drivers)
○ The end user.
○ High-level Python code and AI frameworks

● Developers/Researchers: (car mechanics/designers)
○ Writes AI frameworks, builds novel prototype models
○ Python and C++/CUDA
○ Python bindings

● Performance engineers: (engine designers/manufacturers)
○ Writes optimized kernels
○ C++/CUDA

Option: Just-in-time (JIT) compilation. PyCUDA example.

● C/C++/CUDA code is compiled on the fly as the Python code is executed.

● User system must compile at runtime.
○ Must have the correct environment and flag sets for compilation.
○ May take some time

● May not always be supported

Option: Python bindings. PyBind11 example.

● C/C++/CUDA code is compiled ahead of time, and bound to a python method.

● Less flexible; only supports what the developer compiled.
● Limited support for CUDA (no setuptools support)

○ Couple poorly maintained 3rd party repo, or util as part of frameworks (PyTorch)

Takeaways

● Python/CUDA interfacing needed in AI
○ AI end users prefer Python, whereas CUDA and GPU developers favor C/C++
○ Framework developers and researchers use Python binding or JIT compilation bridge the gap.

● JIT compilation
○ Example: PyCUDA
○ More flexible, but require correct environment, compilation time, and often C/C++ knowledge.
○ Is not always supported.

● Python bindings
○ Example: PyBind11
○ Less flexible, but developer controls the compilation and usually no C/C++ knowledge required.
○ Less official support.

