JSON Web Token




Problems with communicating

message = {“username”.”ryo”, "action”:”change password”}

=> Difficult to authenticate the sender and the data



Hash-based Message Authentication Code (HMAC)

—> Messages are sent along with HMAC: hash (shared secret, message)

144 144

message = {“username”:”ryo”, “action”:”change password”}

HMAC: hash (“my key”, message)

Sent data: message + HMAC

-=> Verifies that:

€ message was sent by client with the shared secret,
€ message was not tampered with in transit



JSON Web Token (JWT)

Encoded PASTE A TOKEN HERE Decoded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGci0iJIUZITNiIsInR5cCI6IkpXVCJ9.ey

JzdWIi01iIxMjMBNTY30DkwIiwibmFtZSI6Ikpva S

i "1 "HS256",
G4gRGI1IiwiaWF@IjoxNTE2MjMSMDIYFQ. HMwf4 Sl i
pIs-aI8UG5Rv2dKplZPAXKvwVT5moZGAB8mogA }

PAYLOAD: DATA

{
"sub": "1234567890",
"name": "John Doe",
"iat": 1516239022

}
VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
my_secret

) O secret base64 encoded

Source: https://jwt.io
B



Example use case: Bank website

HTTPS form data + JWT

-=> Some use cases
& APIs: Google, AWS, Colfax
€ Auth Tokens: OAuth 2.0



Common mistakes

=> Some common mistakes by developers.

L 2R 2R 2R 2 2

Authentication vs Authorization
JWT info is readable w/o secret
Signed and unsigned data

JWT w/o expiration

Multi-use JWT



Conclusion

= JWT is a HMAC standard to secure communication.

€ \Verifies that the message came from a sender with the key
€ \Verifies that the message was not tampered with

=> Itis an industry standard tool for securing APIs and for Authentication.
=> JWT is a secure tool, but like all tools is only as good as the developer.



