
Attention and the Transformer 
Architecture



Our work: FlashAttention-2 on Hopper

• Optimized Multi-Head Attention (MHA) via kernel fusion techniques on 
NVIDIA Hopper™ architecture.


• Attention formula is: , where 

Q, K, and V are (N x d)-matrices (query, key, and value).


• Base algorithm is Tri Dao's FlashAttention-2.


• Goal today: Explain context of optimization work in the landscape of deep  
learning models and the transformer model architecture.

O = softmax (1/ d QKT) V



Transformer 
architecture

Figure 1 from 
"Attention Is All You Need" 

Vaswani et. al., 2017



Transformers – origin story

• Transformers were introduced to address limitations of recurrent neural 
networks (RNNs) and variants (LSTM, GRUs) in sequence processing tasks.


• RNNs process data sequentially, but to extend models to large sequence 
lengths in a computationally efficient way we want to exploit parallelization.


• At the time, the attention mechanism was introduced in conjunction with 
RNNs to model large-scale dependencies within data.


• A key insight of "Attention Is All You Need" was to dispense with recurrence 
and rely entirely on attention.



Transformer model, initial steps
• Tokenization: raw input data converted into a batch of tokens.


• Has dimension (B = batch size, N = sequence length), 
e.g. B = 4, N = 4096.


• Input embedding: tokens converted into vectors of length D = embedding 
dimension, e.g. D = 2048.


• Yields tensor of dimension (B, N, D).


• Positional encoding: used to know about order of the sequence.


• Adds vectors to initial token embeddings that encode positional info. 



Transformer model, apart from attention

• Attention sublayer transforms the tensor of shape (B, N, D).


• Output of attention then passed through feedforward neural network.


• Involves two linear transformations and a ReLU activation in between.


• Have , with learnable parameters.


• Also apply layer normalization and residual connections to outputs.


• Have . Sublayer is attention or FFN.


• Stack identical copies of these layers (attention + feedforward), e.g. 6 copies.

FFN(x) = max(0, xW1 + b1)W2 + b2

LayerNorm(x + Sublayer(x))



Self-Attention and Multi-Head Attention

• We saw the attention formula .


• Q, K, V matrices arise from learnable projections of the input tensor.


• .  Weights are learned.


• In multi-head attention with H heads, have a set of H many triples of these 
projection matrices. (H divides embedding dimension D, and D = H*d).


• Then have formula:  
for .

O = softmax (1/ d QKT) V

Q = XWQ, K = XWK, V = XWV

MultiHead(X) = Concat(head1, . . . , headH)WO

headi = Attention(XWQ
i , XWK

i , XWV
i )



Figure 1, revisited

• We discussed layers in the encoder.


• Decoder: each layer has three sublayers. 
First MHA is masked. Insert another MHA 
that receives output of encoder stack.


• Apply softmax+linear to output of decoder 
stack. This makes the token prediction.


• Variants: encoder-only (BERT), decoder-
only (GPT), and more!



Unpacking the attention formula

• Why query, key, value in ?


• Query: current item for which we're computing the attention weights.


• Key: the items in the sequence compared against the query.


• Comparison done using scaled dot product.


• Softmax is smooth approximation to argmax: think of it as selecting the 
largest entry in the vector, but in a way suitable for doing backprop in training.


• Value: finally, use attention weights to create a weighted sum of values per 
every query item.

O = softmax (1/ d QKT) V
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