
Attention and the Transformer
Architecture

Our work: FlashAttention-2 on Hopper

• Optimized Multi-Head Attention (MHA) via kernel fusion techniques on
NVIDIA Hopper™ architecture.

• Attention formula is: , where 

Q, K, and V are (N x d)-matrices (query, key, and value).

• Base algorithm is Tri Dao's FlashAttention-2.

• Goal today: Explain context of optimization work in the landscape of deep  
learning models and the transformer model architecture.

O = softmax (1/ d QKT) V

Transformer
architecture

Figure 1 from 
"Attention Is All You Need" 

Vaswani et. al., 2017

Transformers – origin story

• Transformers were introduced to address limitations of recurrent neural
networks (RNNs) and variants (LSTM, GRUs) in sequence processing tasks.

• RNNs process data sequentially, but to extend models to large sequence
lengths in a computationally efficient way we want to exploit parallelization.

• At the time, the attention mechanism was introduced in conjunction with
RNNs to model large-scale dependencies within data.

• A key insight of "Attention Is All You Need" was to dispense with recurrence
and rely entirely on attention.

Transformer model, initial steps
• Tokenization: raw input data converted into a batch of tokens.

• Has dimension (B = batch size, N = sequence length), 
e.g. B = 4, N = 4096.

• Input embedding: tokens converted into vectors of length D = embedding
dimension, e.g. D = 2048.

• Yields tensor of dimension (B, N, D).

• Positional encoding: used to know about order of the sequence.

• Adds vectors to initial token embeddings that encode positional info. 

Transformer model, apart from attention

• Attention sublayer transforms the tensor of shape (B, N, D).

• Output of attention then passed through feedforward neural network.

• Involves two linear transformations and a ReLU activation in between.

• Have , with learnable parameters.

• Also apply layer normalization and residual connections to outputs.

• Have . Sublayer is attention or FFN.

• Stack identical copies of these layers (attention + feedforward), e.g. 6 copies.

FFN(x) = max(0, xW1 + b1)W2 + b2

LayerNorm(x + Sublayer(x))

Self-Attention and Multi-Head Attention

• We saw the attention formula .

• Q, K, V matrices arise from learnable projections of the input tensor.

• . Weights are learned.

• In multi-head attention with H heads, have a set of H many triples of these
projection matrices. (H divides embedding dimension D, and D = H*d).

• Then have formula:  
for .

O = softmax (1/ d QKT) V

Q = XWQ, K = XWK, V = XWV

MultiHead(X) = Concat(head1, . . . , headH)WO

headi = Attention(XWQ
i , XWK

i , XWV
i)

Figure 1, revisited

• We discussed layers in the encoder.

• Decoder: each layer has three sublayers.
First MHA is masked. Insert another MHA
that receives output of encoder stack.

• Apply softmax+linear to output of decoder
stack. This makes the token prediction.

• Variants: encoder-only (BERT), decoder-
only (GPT), and more!

Unpacking the attention formula

• Why query, key, value in ?

• Query: current item for which we're computing the attention weights.

• Key: the items in the sequence compared against the query.

• Comparison done using scaled dot product.

• Softmax is smooth approximation to argmax: think of it as selecting the
largest entry in the vector, but in a way suitable for doing backprop in training.

• Value: finally, use attention weights to create a weighted sum of values per
every query item.

O = softmax (1/ d QKT) V

References

• "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia
Polosukhin. https://arxiv.org/abs/1706.03762.

• Author order randomized in the paper with equal contribution.

• There are many, many introductions to this famous paper. We found the
following tutorial helpful: https://jalammar.github.io/illustrated-transformer/.

https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/

