
Narrow bit-width number 
formats for deep learning



The context: Quantization in Deep Learning

• The basic "atom" of computation in a ML model is matrix multiplication.


• We have a choice on the number of bits used to represent the "weights" in 
our model (i.e., the learnable parameters in the matrices that we are 
multiplying the input by).


• Lowering the number of bits used lowers the possible precision of our 
calculations, and hence the accuracy of our model.


• On the other hand, it speeds up the training and inference of the model while 
improve its memory and power efficiency.


• In practice, the accuracy loss can be managed and this is an acceptable 
tradeoff.







Basics of number formats
• Numbers are stored in binary representation on a computer.


• For a floating point number, you have a sign bit, and then bits allocated to both 
the exponent and mantissa (significand).


• For example, the IEEE 754 standard specifies the single-precision floating point 
format FP32 as having 1 sign bit, 8 exponent bits, and 24 mantissa bits. 
 

• When reducing the number of bits used (always using a power of 2), we have a 
choice on how to allocate bits to the exponent and mantissa.


• Different choices may work better for training vs. inference (range vs. precision). 





Hopper Tensor Cores by Precision Type
• The H100 GPU has native support for number formats down to 8 bits. 
 
 
 
 
 
 
 
 
 
 



Targeting the Hopper Tensor Cores in CUDA

• On Hopper, we have WGMMA (Warpgroup Matrix Multiply Accumulate) for 
doing accelerated matrix multiplications C = A*B.


• WGMMA corresponds to the instruction wgmma.mma_async in the PTX ISA.


• In wgmma.mma_async, one warpgroup (=128 threads) cooperatively performs 
a matrix-multiplication on tiles of the matrices A and B (of certain allowed 
dimensions, like {M,N,K} = {64,64,16}).


• wgmma.mma_async makes assumptions on the layouts of the fragments of 
the operand matrices held by the different threads.







WGMMA continued
• WGMMA operations are mixed-precision: operand matrices are lower bit-

width than the accumulator matrix (e.g., FP16 or FP8 operand matrices with 
FP32 accumulator).


• Mixed-precision should be contrasted with mixed-input where the A operand 
is of a different bit-width than the B operand, e.g. as in weight-only 
quantization.


• The ISA doesn't currently support mixed-input wgmma.


• However, the CUDA programmer can support mixed-input wgmma on the 
software side through upcasting the narrower bit-width operand.


• Then, layout conformance becomes a challenge with using wgmma.



Illustration of upcasting 8 to 16 bits in mixed-input GEMM. Source: "Developing CUDA 
kernels to push Tensor Cores to the Absolute Limit on NVIDIA A100."



References

• "Neural Network Quantization & Number Formats From First Principles", 
Dylan Patel. https://www.semianalysis.com/p/neural-network-quantization-
and-number


• "Mixed-input matrix multiplication performance optimizations", Manish Gupta. 
https://blog.research.google/2024/01/mixed-input-matrix-multiplication.html

https://www.semianalysis.com/p/neural-network-quantization-and-number
https://www.semianalysis.com/p/neural-network-quantization-and-number
https://blog.research.google/2024/01/mixed-input-matrix-multiplication.html

